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Abstract

This report documents an effort to develop practical and accurate methods of es-

timating the fatigue lives of complex aerospace structures subjected to intense random

excitations. The emphasis of the current program is to construct analytical schemes of

performing fatigue life estimates for struct_es that exhibit nonlinear vibration behavior

and that have numerous resonant modes contributing to the response.
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I. Introduction

This report describes results obtained over a three year period under funding from the

Structural AcousticsBranch at NASA Langley Research Center. The goal of this effort has

been to develop methods for predicting the acoustic fatigue lives of aerospace structures.

An attempt has been made to focus on certain technology areas that this investigator

believes are in most need of further development. The two main issues that have been

addressed are 1) how to properly account for the effects of broadband random loading in

acoustic fatigue studies and 2) how to include nonlinear effects due to intense excitations

in acoustic fatigue predictions.

In acoustic fatigue studies it is important to be able to account for very complicated

stress and strain time histories because acoustic loads often contain components over a

broad range of frequencies. As a result, a large number of resonant modes can be excited.

As will be discussed in the following, although acoustic fatigue problems are often charac-

terized by extremely broadband loads, (in contrast to most fatigue problems) it is common

practice to idealize structures as having a single degree of freedom. In this case, the re-

sponse is narrowband. This greatly simplifies fatigue predictions but it is not consistent
with observations.

To aid in the development of 'consistent' fatigue prediction procedures, several sections

are devoted to the problem of identifying the proper damage cycle counting method for

acoustic fatigue predictions. The Rainflow cycle counting method is discussed in detail

and methods are developed to aid in its implementation.

Nonlinear effects are often important in acoustic fatigue studies because it is the high

level excitations that cause the most damage. Nonlinear structural response can have a

significant impact on acoustic fatigue life in service as well as in tests. Acoustic fatigue

testing is often performed using artificially high excitation levels in order to accelerate the

rate of damage accumulation. Accelerated testing is necessary when trying to determine

the fatigue characteristics of a structure that is expected to be useful for 20 years. When

nonlinear behavior contributes to the structural response, the fatigue mechanisms can be

modified significantly.

In order to account for nonlinearities in fatigue predictions it is necessary to obtain

a time domain simulation of the response. In a nonlinear structure with a large number

of resonant modes, as often considered in acoustic fatigue studies, it is not computation-

ally practical to perform a detailed time domain simulation of the random response. In

this report, a numerical procedure is developed which permits a fatigue prediction for a

nonlinear structure to be performed with roughly the same numerical effort as for a linear

structure having the same number of degrees of freedom. The procedure is applied to

nonlinear beams and plates and fatigue predictions are found to agree closely with results

of more computationally intense conventional methods.
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II.1 Basics of Fatigue Life Estimation - Peak Counting

For the present study we will assume that the relation between the stress amplitude, S,

and the number of cycles to failure N, may be approximated by the well known relation,

c

N = S--T (II.1.1)

where c and b are experimentally obtained constants for a given material. For the present

discussion it will be assumed that the number of fatigue cycles experienced by the structure

is equal to the number of positive stress peaks, or stress reversals, that occur over time.

This approach has been used in a number of acoustic fatigue studies. An alternative cycle

counting method, Rainflow cycle counting, will be described in later sections and will be

compared to the older peak counting scheme.

The assumption that damage occurs at each positive stress peak may be conveniently

combined with the Palmgren-Miner linear damage accumulation rule [1] to produce fatigue

life estimates. In this theory, the damage, Di, caused by stress reversals at the stress level
Si is

n(Si)
Di(Si)-- g(si)' (II.1.2)

where n(Si) is the number of stress reversals experienced by the structure at the stress

level Si and N(Si) is the number of reversals required to cause failure at this stress level.

The total damage, Din, will be the sum of the damage at all stress levels that occur,

Dm= E D,(Si) = E N-'("_i)" (II.1.3)
i i

From equation (II.l.1),

so that equation (II.1.3) becomes

c

N(Si) = _-_i_, (II.I.4)

c
(II.I.5)

The form of equation (II.l.1) assumes that all stress peaks occur at positive stress

levels as would be the case for sinusoidal loading. When a resonant system is subjected

to random loading, however, we must allow for the possibility of stress peaks at negative

stresses which make positive contributions to the accumulated damage. To account for this,

we will take the absolute value of the stress level, ,-qi, so that equation (II.1.5) becomes

D,, = 1 En(Si)[silb. (II.1.6)
c

i

Failure is predicted to occur when Dm= 1.



Since the responseand rate of damageaccumulation in the structure are assumedto
be random, the fatigue life may beestimated from the expectedvalueof the rate of damage
accumulation. If re(S) is the rate of occurrence of a peak with level S, and if pp_ak(S) is

the probability density for response peaks, then the expected value of the damage rate,

A(S), may be written as

£E[A] = m(S)lSIbpv,,,k(S)dS.
oo C

(II.1.7)

The assumption that the response process is stationary gives the mean fatigue life as

1
T- _-,r^i" (II.1.8)

l'J [I._IL]

From equations (II,1.7) and (II.1.8) the problem of estimating fatigue life in a ran-

dom system is one of properly determining the rate at which peaks occur, m(,.q), and the

peak probability density, pp,,,k(,.q). The goal of the present study is to develop practical

and accurate methods of applying equations (II.1.7) and (II.1.8) to structures with multi-

ple resonant modes and where the response levels are sufficiently high to elicit nonlinear

response.

To illustrate the application of equations (II.1.7) and (II.1.8) consider the problem

of predicting the fatigue life of a linear system having one resonant frequency and that is

driven with Gaussian white noise,

(II.1.9)

In a linear system the stress is linearly related to the displacement, x by S = Kx, where

the constant, K depends on material and geometrical properties. It may be shown that

for Ganssian input, the response of the linear system will be Ganssian. It is also known

that for a Gaussian random process, the peak probability density depends on the response

spectrum.

Assume that the response of a one degree of freedom oscillator is a narrowband process.

Then the probability density for peaks in the time domain response is the Rayleigh density,

5' -L-_s ' (II.1.10)

where a_ is the mean square stress. Also assume that the rate at which peaks occur is a

constant and equal to the natural frequency of the oscillator,

re(S) = w__o. (II.i.II)

Substituting equations (II.l.10) and (II.l.ll) into equation (II.1.7) and carrying out

the integration gives

E[A] = Wo ,vl-_a ,br, b + 2
_'_c_V "_ s) (T), (11.1.12)



where the Gamma function is defined by

r(y) = 2 x2_-le-X2dx,

Equation (II.1.12) was first obtained by Miles [2].

for y > 0. (II.1.13)

II.2. Linear Systems with Multiple Degrees of Freedom

In the case of a single degree of freedom system as discussed in the previous section, it

is relatively straight-forward to estimate the rate at which damaging events occur in the

system. It is quite reasonable to assume that one damaging event occurs for each cycle of

the oscillation. Unfortunately, when the system has multiple frequency components in its

response, as in a multi-mode structure, the task of estimating the rate of damaging occur-

rences is very difficult. In the present section an example is given of the classical approach

to estimate the damage rate in a beam with multiple resonant modes. Improvements on

this method will be discussed in subsequent sections.

The main difficulty in estimating ratine life in multi-mode systems is illustrated in

figures II.2.1 through II.2.3. These figures show predicted stress in the time domain for a

beam having one, two, and three resonant modes. The spectra of the stress response for

each case are shown in figure II.2.4. Figures II.2.1 through II.2.3 show that as the number

of modes in the structure is increased, the time domain response becomes increasingly

complicated. If we were to define a damaging event to be the occurrence of a positive

stress peak, or where the stress reaches a maximum value in time and then decreases, then

it is clear from the figures that when three modes contribute to the response the rate at

which damage is accumulated is greater than in the single mode system.

While it is clear that the time domain response is profoundly influenced by the number

of modes in a system and that this should in some way affect the fatigue life, it is not

a simple matter to determine exactly how the damage rate iflcreases with the number of

modes. When the time history is complicated as in fig_3, we must make assumptions

about what causes damage and then attempt to estimate the rate at which the damaging

event occurs. The problem of selecting a proper definition of a damaging event has not

received sufficient attention in recent acoustic fatigue research. This will be addressed in

more detail in the following sections.

In the current section, applications of two different definitions of damaging event are

investigated; one in which damage is assumed to occur for each stress peak and one where

damage results only from the highest positive stress peak between each zero crossing. For

a linear beam with multi-mode response, approximate analyticM solutions for the damage

rate and fatigue life are developed and compared to estimates obtained using numerical

simulations for each assumed definition of damaging event.

The structure studied here consists of a base excited beam with clamped boundaries.

The ends of the beam are thus assumed to have zero slope and prescribed random trans-

verse displacement. The axial deflections at the beam ends are assumed to be zero. The



assumptionof linear responseallowsus to expressthe forced vibration in terms of a super-
position of the eigenfunctionsand natural frequenciesof the beam. The equation governing
the transverse deflection, W(x, t) is

omW

pAtiV + EITz 4 + rl#d = -pA'(/Vo(t), (II.2.1)

where p is the mass density, A is the cross section area, I is the moment of inertia, E is

Young's modulus, and rI is a viscous damping coefficient. _Vo(t) is the random acceleration

that is prescribed at the ends of the beam and is assumed to be Gaussian with zero

mean and a constant single sided power spectral density G#o with units of (Vdo)2/Hertz.

Equation (II.2.1) is derived in section (II.2.4) and is equivalent to equation (II.4.23) with

the nonlinear coefficient, c(t) set equal to zero. To solve for the response by modal analysis,
let

OO

W(x,t) = E ai(t)¢i(z), (II.2.2)
i=1

where the ¢i(x) are the beam eigenfunctions and ai(t) are unknown functions of time.

For a beam with clamped ends, the eigenfunctions are given by

¢i(z) = cos(pix /l) - cosh(pix /l) + Di(sin(pix /1) - sinh(piz/I)) (II.2.3)

where Pi and Di are given in the table below for the first six eigenfunctions.

i pi Di

I 4.730040745 -0.982502215

2 7.853204624 -1.000777312

3 10.99560784 -0.999966450

4 14.13716549 -1.000001450

5 17.27875966 -1.000000000

6 20.42035225 -1.000000000

Table II.2.1 Eigenfunction Coefficients for a Clamped Beam.

Substitution of equation (II.2.2) into (II.2.1) leads to a set of equations for the un-

known ai(t),

&i +_&i +w_ai = F_'(/Vo(t), i= 1,2,...,_, (II.2.3)

where

, =-iV),

1fo'Fi = -7 ¢,(x)dz.



b is the beam width and h is the thickness. The solution of equation (II.2.3 / can be

obtained as

ai(t) = oF(t) + Fi --/t-- e-_ (*-*) sin(wa, (t- r))VV'o(r)dr (II.2.4)
J0

where w 2 = w_-_2/4, and a_(t) is the transient solution due to a non-zero initial condition.di
Since the transient solution decays in time, it has no effect on the steady-state response.

We shall then take a_(t) = 0 in the subsequent discussion. The normal strain of the beam

in z direction is given by

( a:¢'(x)_ _,(,).a:w(x,t)_ _y _ ]
exx = --y Ox 2 i=1

The maximum strain is written as

The maximum strain occurs at the top or bottom surface at each end of the beam, y = h/2

andx=0orl. Let

h 02¢_(0) (II.2.6)
2 Ox 2

The maximum strain rate is given by

C<2

e= E a,ai(t), (II.2.7)
i=1

_= __, ai&i(t), (II.2.8)
i=1

Equations (II.2.7) and (II.2.8) are often truncated to a finite summation in real computa-

tion, leading to
N N

"= Z _,_,(_), _= Z a,_,(_), (II.2.0)
i=1 i=l

where N is a finite integer.

It can be shown that the maximum strain e and strain rate t given by the truncated

series are stationary Gaussian processes. The first and second order statistics of e and t

completely determine the process, and can be obtained as follows

E[e] = E[t] = 0,

N N

E[e 2] = _ _ aiajE[ai(t)ai(t)],

i=l j=l

N N

E[__]= _ _ _,ajE[_,(t)_(t)],
i=l j=l

N N

i=1 j=l

(II.2.10)
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where

E[ai(t)aj(t)]= F_PjGC¢o rio'
2Wd__d i

-- 2wa-----Tmn Wdi 7" COS Wdi 7- +

e -_r sin wd_ 7"sin Wdj 7-d7-,

20_d j COS _ddl 7" sin wa_ 7-

wd_ r sin r _ dT-,
4w& O)di sin _dj J

E[_(t)aj(t)] - F_FiC.of'2,.,d, _- " {sin wa_ r cos wa_ r
2Wdi sinwa_7- sinwdj v} dT-,

and E[-] is the expected value. It can be shown that in the steady-state as t ---* c_, we have

N N _aiajFiFjGWo

= + + +(T e --

i=1 j=l -- OJdJ 03di

N N _aiajFiFjGl7Vo (w2 + w2)
(11.2.11)

and

E[_I = 0.

Having obtained the statistics of the strain and strain rate, e and t, we then proceed

to estimate the fatigue life of the system. There may be different approaches to this prob-

lem dependent on the counting scheme for damaging events that one chooses in applying

Miner's rule as discussed in Section II. If we count all the peaks of the strain (or stress)

as damaging events, and use the fact that e and t are joint Gaussian variables, we can

take advantage of existing methods as presented in reference [3]. To apply the theory, it

is necessary to evaluate two parameters: E[MT], the average rate at which strain peaks

occur, and a parameter, o_, which is the ratio of the rate at which zero crossings occur to

the rate of strain peaks. The parameter a appears in the probability density function of

the strain peaks. E[MT] and c_ are given by

E[MT] =--,a3 a- a22 , (II.2.12)
21ro'2 a 1a2

where

£_ = ¢,(_)d_,
OO

//
O0

£
OO

(11.2.13)



q'_(w) is the two sided power spectrum of the strain, and is given by

N N

i=1 j=i

(11.2.14)

where

and

Oij(w) = GecoFiFj H,(-w)Hj(w),
4_r

1
Hi(w)

w i

Oij(w) is the cross power spectrum of ai and ej.

(11.2.15)

(II.2.16)

In the present study, we assume that

the random excitation Wo(t) is bandlimited With a cutoff frequency ft. fc is taken to be

1000 Hz in the numerical study reported next. This bandlimited assumption is necessary

for the convergence of the integral for as2 in equation (II.2.13).

The probability density function for response peaks is given by

ppe.k(C) = (1 -- Or2) ½e__[2a_(l_a')]-I

v/_al

l+e [

(II.2.17)

where a and O"1 are defined in equations (Ii.2A2)and (11.2.13).

In a random process in which there is only one peak for each zero crossing, c_ will equal

to unity mad equation (11.2.17) reduces to a Rayleigh density. This is typically considered

a narrowband process. A process with an infinite number of peaks for each zero crossing

will have a equal to zero and equation (I1.2.i7) will reduce to the Ganssian density. The

process is then said to be broad-band.

To calculate the damage rate as in equation (II.2.7), re(S) is replaced by a constant

E[MT] and equation (II.2.17) is substituted for the peak density. Since the damage rate

in equation (11.2.7) is expressed in terms of stress, S, rather than strain, e, we must also

employ the relation S Ee, where E is Young's modulus for the material. The damage

rate in terms of an integration over the strain then becomes

E[A] - E[MT pp,,k(e)de, (I1.2.18)
OO

with E[MT] given in equation (11.2.12) and pp,ak(e) given in equation (11.2.17).

The damage rate as estimated by equation (I1.2.18) is based on the assumption that

damage occurs every time the strain reaches a maximum and then decreases. An alter-

native to assuming that each peak causes damage is to assume that the damage rate is a

narrowband process. The expected value of the damage rate, E[A] may then be estimated

by approximating the strain as a narrowband process. The peak density then corresponds

10



to the Rayleigh density and the rate at which peaks occur is the sameas the rate of zero
crossings,no(e),

as a2 (II.2.19)
no(e)- 2_ra_ -- 2_ral

The average damage rate and fatigue life are then obtained as in equation (11.2.12)

(11.2.20)

and
1

T = E[Dm------]' (II.2.21)

where as = Ea,, and E is the Young's modulus of the material.

In the numerical results reported herein, the number of terms used in the expansions

for the response, equations (II.2.9), is taken to be N = 6. Because of the symmetry of the

structure, the generalized forces associated with the even modes in equation (II.2.3) are
zero,

F2 = F4 = F_ = 0. (11.2.22)

This indicates that the modes that are anti-symmetric about the middle point (x = l/2) of

the beam do not contribute to the long-term dynamic response, and hence to the fatigue
damage accumulation.

The methods presented above have been applied to estimate the fatigue life of the

clamped beam as a function of the level of the random base excitation and as a function

of the fatigue exponent, b, in equation (II.2.1). The predictions were performed using

the analytical methods discussed above and also by a direct numerical simulation of the

random response in the time domain.

Figure II.2.5 shows a comparison of fatigue lives obtained by the analytical method

discussed above and by numerical simulation. In this case it is assumed that each stress

peak in the time domain causes damage. The figure shows that the numerical and analytical

methods give essentially identical results. The effect of including one, two, or three modes

in the model is also shown. It is found that with the assumption that each stress peak

causes damage, increasing the number of modes tends to reduce the fatigue life. It could

be argued that in general, one obtains a nonconservative fatigue life estimate by only

accounting for the lowest frequency mode in a structure.

The calculations shown in figure II.2.5 are repeated in figure II.2.6 except that in this

case it is assumed that only one damaging event occurs for each time the stress crosses

zero with positive slope. Here it is assumed that the damage results only from the highest

peak between zero crossings. It is again found that the analytical and numerical methods

are in excellent agreement. As in figure II.2.5 increasing the number of modes in the model

decreases the fatigue life.

Comparing the results in figures II.2.5 and II.2.6 shows only very small differences

between the two damage counting schemes. The close agreement between the elementary

counting schemes examined here should not be interpreted as evidence that all damaging

11



eventdefinitions will give identical results. A more detailedcomparisonof damagecounting
schemeswill be presentedin the following sections.

II.3. Effect of Nonlinearity on Fatigue Life (Peak Counting)

In the special case where the response of a nonlinear structure is dominated by a single

resonant mode, the methods discussed above can be extended to estimate the fatigue

life including nonlinear effects. A single mode model of the displacement response of a

base-excited beam with large deflection may be expressed as

+ + + = f(t), (II.3.1)

where a is the response of the first mode so that the beam displacement, W(x,t), is

w(=,t) = (II.3.2)

¢(x) is the corresponding eigenfunction. Wo is the natural frequency when the deflections

are small, fl is the damping coefficient and _ is a constant which determines the degree

of nonlinearity, f(t) is a Gaussian random process. The derivation of equation (II.3.1) is

presented in the following section.

The nonlinearity in the beam response is assumed to result from the stretching of the

fibers along the beam's neutral axis which occurs when the deflections are large. When

large deflections are included in the analysis the stress (or strain) is not linearly related

to the displacement. For the nonlinear beam with a single resonant mode, the maximum

stress (at the beam end) is found to be

, (II.3.3)

where E is Young's modulus, I is the beam length, h is the thickness and dl, and p are

constants given by dl = 6.1513 and p = 4.730.

For a single mode system described by equations (II.3.1) and (II.3.3), it is possible to

apply equations (II.1.7) and (II.1.8) in a fairly rigorous fashion. The result is a nonlinear

analog of Miles' linear single degree of freedom analysis shown in equation (II.l.12). It

should be emphasized, however, that real structures very rarely behave as single degree

of freedom systems and that fatigue life estimates are affected by the number of modes

included in the analysis. The main purpose of the present study is to develop accurate

and practical methods of applying equation (II.1.7) to multi-mode nonlinear systems.

For the nonlinear system considered here the easiest approach is to express the ex-

pected value operation in equation (II.1.7) as an integration over the modal response, a,
rather than over the stress, ,5'. This leads to

E[A]= IS( )1b- ppeak(o_)dol. (II.3.4)

12



It is not a simple matter to derive an exact expressionfor pp¢ak(a) or m(S(a)) in

equation (II.3.4) when the input to the system is Gaussian white noise. If it is assumed

that there is only one peak for each zero crossing with positive slope (which implies a

narrow band process) then pp,ak(a) and m may be calculated so that equation (II.3.4)
becomes

-- a2 . a4
E[A] = Cw2 [S(_)[b(_ + _3)e-2"--_-_--_'-;_ de, (11.3.5)

C o oo

where

C - 2_rW2oa_o e .... aa, (II.3.6)

and where a 2_ois the mean square response of a(t) when _ is set to zero in equation (II.3.1).

The calculation of the damage rate in equations (II.3.5) and (II.3.6) relies on knowledge

of the peak probability density which for the present system is given by

(a + / e-'To_'T -_-'_ (II.3.7)
vp.k( ) = 0,L

This expression may be obtained from the joint probability density of a and & if

the response is a narrowband process. Unfortunately, the joint density of a and & may

be obtained only for rather specialized nonlinear systems. Since our goal is to develop a

method that is applicable to a wide class of systems, an approximate method of estimating

the damage rate will now be described that includes the effects of nonlinearities on a

through the method of equivalent linearization [4].

The method of equivalent linearization consists of replacing equation (II.3.1) with an

equivalent linear system given by

a + w_a + 3& + e(a) = f(t), (II.3.8)

where w e2 is the equivalent linear frequency and e(a) is an error term. w e2 is chosen so

that the mean square of the error is minimized. If the error, e(a), is then neglected,

equation (II.3.8) is a simple linear system with a natural frequency that depends on the

spectrum level of the excitation. Since the system is linear, its response will be Gaussian

for a Gaussian input, f(t). This leads to

O32
2

V/1 12_0,2, (II.3.9)= + + ).

G t,2If the single sided power spectral density of f(t) is f(y_) with units of/U/Hertz,
then

0 ,2 = GI
_o 4wo2----_, (II.3.10)

where Gf is assumed to be a constant at all frequencies. One may then calculate the mean

square response of the equivalent linear system to be

0"2 -- GI

_" 4_3" (11.3.11)

13



With the response of the equivalent linear system assumed to be Gaussian when e(a)

is neglected in equation (II.3.8), one may calculate the peak probability density to be a

Rayleigh distribution as in equation (II.l.10). The peak density for the equivalent linear

system is then
_2

a - 2,--;:r- (II.3.12)p,(_) = :5--e o,,
0"0%

2 is given in equation (II.3.11).where _ra,

To evaluate equation (II.3.4), we must also approximate the rate of occurrence of

peaks, m(5'(a)). For the present study this will be taken to be a constant equal to the

equivalent linear natural frequency of the oscillator in Hertz, we/2rr.

By using equivalent linearization, equation (I1.3.4) may then be approximated by

E[zN-- _' f0°° IS(_)I_ _ - _,-2:_---_c a2 e -+da, (II.3.13)

where S(a) is given in equation (II.3.3).

The comparison of equations (II.3.5) and (II.3.13) may be simplified somewhat by

defining a normalized random variable,

O/

7 = --- (11.;J.14)
O"a

Substitution of equation (II.3.14) into equations (II.3.5) and (II.3.6) gives

O_ofolS(_o)l ' .(_ + _o_D_-_-+4#d_
,, _,,, , (n.3.1s)

E[A]R= cv_ ]foo_-' -"° _-d_

where the R subscript on E[A] denotes the 'rigorous' solution.

Substitution of equation (II.3.14) and the use of equations (II.3.9) and (II.3.10) in

equation (II.3.13) give

Oj ° _0 oo _. _:z ,.E[A]E = _ lS(_o)lb_( (1 + _,/1 + 12_a_))3/2e-TO+_)dT, (II.3.16)

where the E subscript on E[A] denotes the equivalent linearization solution.

Substituting equation (II.3.14) into (II.3.3) and rearranging give

5/= alao(7 + a72), (II.3.17)

where

al = Eh(1)2, (II.3.18)
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and
aodl

a - _ (II.3.19)
hp2 •

The results of this section may be used to estimate the effects on fatigue life of nonlin-

ear strains in a single mode system and to assess the applicability of equivalent linearization

to the nonlinear fatigue problem. Figures II.3.1 and II.3.2 show predicted fatigue lives of a

base excited beam for a range of excitation levels and for the damage exponent, b, in equa-

tions (II.3.15) and (II.3.16) equal to 4 and 6. The geometrical and material parameters

of the beam are identical to those used in the results presented in Section II.2. Excellent

agreement is shown between the results of equations (II.3.15) and (II.3.16) for both values

ofb.

Figures II.3.1 and II.3.2 show the predicted fatigue life with and without the effect

of nonlinear axial strain. In the calculations, the nonlinear axial strain was neglected by

setting a - 0 in equation (II.3.17). In this case the nonlinearity affects the displacement

response through equation (II.3.1) but the relation between strain and displacement is

assumed to be linear. This is essentially the same approach taken in reference [4]. The

figures show that when the full nonlinear strain-displacement relation is used, the added

stretching strain substantially reduces the fatigue life at high excitation levels.

The results shown in figures II.3.1 and II.3.2 indicate that nonlinear stiffness in the

beam can reduce the response amplitude relative to that of a linear system and hence

increase fatigue life. However, the figures also show that the nonlinear stretching strain

results in an increase in the damage rate and hence partially cancels the beneficial effect

of the reduced displacement.

II.4 Governing Equations For A Nonlinear Beam

The governing equations for a beam will now be developed including what are likely to

be the dominant nonlinear effects. The nonlinearities accounted for here are due to axial

stretching and friction damping at the boundaries. The ends of the beam are assumed to

be clamped in a fixture that allows axial slipping when the axial force exceeds a certain

value. For simplicity, this slipping is assumed to occur at only one end, the other end

being held rigidly.

The friction damping model has been included in this analysis because it is suspected

to be the most likely nonlinear damping mechanism in the beam. When the experimental

phase of the current project is complete, data will be available to determine the relative

influence of stiffness nonlinearity (due to axial stretching) and damping nonlinearity (due

to friction at the boundary). Although the friction damping model is developed in this

section, it has not been utilized in a numerical model to assess its influence on fatigue life.

The derivation of the equations of motion will be based on Hamilton's principle,

t26 (T - Y + W)dt = O, (II.4.1)
Jtl
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Where 6 is the variational operator, T is the kinetic energy, V is the potential energy and

W is the work done by nonconservative forces. The limits of integration, tl and t2 define

an arbitrary time interval.

If the beam is subjected to a base acceleration, lYC'o(t), and if the deflection of the

beam mid-line relative to its moving supports is W(x,t), where x is the axial coordinate,

then the kinetic energy may be written as

T - (wo(0 + 0)  dx, (I1.4.2)

where p is the density, A is the constant cross sectional area, I is the beam length, and the

dots denote partial differentiation with respect to time, t. It is assumed that the beam is

thin so that rotary inertia effects are negligible.

The potential energy will be assumed to consist of contributions due to strain energy

in the beam, Vs, and the energy Vb, stored in a linear, axial spring at the boundary at

x = l. To construct the strain energy, 14, it will be assumed (as in elementary beam

theory) that the strain is dominated by the axial strain, ex_. This leads to

b fol /fi Ee_dzdx , (II.4.3)

where b is the beam width (assumed to be constant), h is the thickness, E is Young's

modulus, and z is the transverse distance relative to be beam mid-line.

Bringing the variational operation inside the integrand of equation (II.4.1) gives

where from equation (II.4.2),

_(6T - 6V + 6W)dt = O, (II.4.4)

6"1" -- pA (llv'o(t) + Izd(x,t))6(V(x,t)dx,

and, from equation (II.4.3),

6Y = 6Vo + 6Yb = b

iii.4.5)

| h

_Z:Eexz6e_xdzdx+6Vb. (II.4.6)
2

In equation (II.4.5) we have used the fact that l_¢'o(t) is prescribed so that its variation is

zero. The contributions due to nonconservative forces in 6W will be discussed later.

Substituting equation (II.4.5) into equation (II.4.4) and carrying out the integration

of 6T over time by parts give

(IL4.7)6Tdt = -pA ((Jdo(t) _- _r(x,t))6W(x,t)dxdt,
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where the variation of W(x, t) is zero at t = tl, and t = t2.

The variation of the strain energy in equation (II.4.6) must be written in terms of

convenient displacement coordinates. This is accomplished by expressing the axial strain

in terms of U(x, t), which is the axial displacement at z = 0, and W(x, t), the transverse

displacement at z "- 0. This gives

a (x,t) a2w(x, ) 1 2e,x = c3x z x2 + 5 \ _ _ (II.4.8)

The last term on the right hand side of equation (II.4.8) accounts for axial stretching which

will be important when the deflection is large.

Substituting equation (II.4.8) into equation (II.4.6) gives

;l f-_ . 1 2

= bEJ0 ]_(Ur-zW_+_W_)(_Uz-z6W_+Wx6Wx)dzdx, (II.4.9)

where the subscripts denote partial differentiation. Integrating equation (II.4.9) over z

gives

f! h 3 1 3 1 2
5V,=bE]o (-_W_W_ +h2(U_Wr +_W;)gW_(U_ +_W'_)dx. (II.4.10)

The finite stiffness of the beam support in the axial direction may be modeled by an axial

spring at x = l having spring constant, k. The potential energy of this spring is

_b = 2kV2(l). (II.4.11)

Integrating equation (II.4.10) by parts and including the variation of the boundary poten-

tial energy in equation (II.4.11) lead to

h3

+Eb { _(W_,_W_,to - W_,,6W,lo) + h(U_ W_ + 1W:)_W,to }

+Ebb(U, + 1W_)_UIt o + kU(I)6U(I).
2

(11.4.12)

The remaining term to be evaluated in Hamilton's principle in equation (II.4.4) is the

contribution due to nonconservative forces. This includes the effects of applied forces and

damping. It will be assumed that there are no external forces acting other than those that

produce the base excitation which is already accounted for in the kinetic energy expression,

equation (II.4.2). Two different damping mechanisms will be included in the model. One

will be viscous damping which depends only on the velocity at each point along the beam
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length and the other is due to friction at the support at x = I. The model of frictional

damping accounts for sticking and slipping depending on the axial force at the boundary.

This results in hysteresis which greatly complicates the analysis of the random response.

The variation of the work done by viscous damping (the virtual work) may be modeled
as

/0'6144 = - rfl_V(x,t)6W(x,t)dx, (II.4.13)

where 77 is the viscous damping coefficient. The negative sign accounts for the fact that

damping consists of the removal of energy from the system.

Frictional damping at the support will be modeled as a contact surface with a clamping

force N. It is assumed that as long as the magnitude of the axial force is less than a

critical value, ttN, there is no slipping and the axial force applied by the beam is equal and

opposite that of the frictional support. As the axial force at the beam end is increased to

#N, however, the contact surface slips and no further increase in axial force is allowed. The

stick/slip boundary may then be thought of as a force limiter. The behavior is characterized

in three possible states, (1) axial force equal to -#N for slipping in negative x direction;

(2) zero velocity (no slip) when the magnitude of the axial force is less than #g, and (3)

axial force equal to +ttN for slipping in the positive x direction.

To construct the equations that describe the axial boundary condition let the frictional

damping force be denoted by f,(U(1),U(l)). The virtual work associated with friction
damping is then

514}! = f,(U(t), CI(t))SU(1). (II.4.14)

The axial boundary condition at x = I follows from letting 614_ = 5144 + 5_42i, then

substituting equations (II.4.12) through (II.4.14) into equation (II.4.4) and combining the

terms that multiply 5U(l). Setting the result to zero, we have

-Ebh(U,_ + _W_)I___ t - kU(l) + fs(U(1),U(l)) 6U(1) = 0. (II.4.15)

The first term in equation (II.4.15) may be evaluated using the governing equation for

axial deflection which may be obtained from equations (IIA.2), (IIA.4), and (II.4.12),

E h (V, + ½w:)=0 (It4. 6)
This equation contains no inertia terms because axial kinetic energy was neglected in
equation (II.4.2). It is assumed that resonances in the axial direction are outside the

frequency range of interest.

Integrating equation (II.1.16) over x gives

1 2

u, + 5w; = 40, (II.4.17)

where c(t) depends only on time. From equations (II.4.8) and (II.4.17) the axial strain is

02W(x't) (II.4.18)_,, = c(t) - z Oz 2 ,
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where the first term c(t) is seen to account for axial stretching of the mid-line at z = 0,

and the second term is the usual bending strain. The stretching of the beam mid-line, c(t)

is a constant along the beam length.

Substituting equation (II.4.17) into equation (II.4.15) leads to

-Ebhc(t) - kU(1) + fs(U(l), _r(l)) = 0. (II.4.19)

It is convenient to express this boundary condition in terms of the axial stretching, c(t),

and the transverse deflection, W(x, t), by eliminating U(1). This may be accomplished by

integrating equation (II.4.17) over x,

f01 = zc(t)+ a(t),
1W_((,t)d_v(z,t)+ 5 (II.4.20)

where ( is a dummy variable and a(t) is a constant of integration. Since the axial dis-

placement is constrained to be zero at x = 0, i.e., U(0, t) = 0 then from equation (II.4.20),

a(t) = 0. Evaluating equation (II.4.20) at x = I then gives

lf01U(l,,) = Zc(O- (II.4.21)

Substituting equation (II.4.21) into equation (II.4.19) and rearranging give the friction

force in terms of c(t) and W(x,t)

k f0'fs(c(t), w(z,t)) = (kl + Ebh)c(t) - (II.4.22)

Equation (II.4.22) must be solved along with the governing equation for W(x,t) which

follows from equations (II.4.4), (II.4.7), (II.4.12), (II.4.13) and (II.4.17),

Ebh3 W
PA_r(x,t) + -'_ _zz_ - Ebhc(t)Wzz + rlI;V = -pAV¢o. (II.4.23)

Since W(z, t) is the transverse deflection of the beam mid-line relative to the motion of

the supporting clamps, it will be assumed that W(x,t) and Wx(x,t) are zero at x = 0 and

x = I. This eliminates the boundary terms for W(x, t) in equation (II.4.12).

Equations (II.4.22) and (II.4.23) must be solved simultaneously for c(t) and W(x,t)

with the friction force f_ properly accounted for. Due to the nature of the friction force, an

iterative solution procedure must be used. In the present study, the response is simulated

in the time domain using Newmark's numerical integration scheme.
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III.1 Rainflow Counting

The methods used in the previous sections for identifying damaging events are appeal-

ing because they require statistics of the random response that may be easily computed

using exact closed form expressions. In the present section we estimate damage based on

a consideration of the mechanical behavior of materials rather than on easily computed

statistics. While the resulting procedure does not permit simple analytical expressions to

be used to estimate fatigue life, it has been shown to produce more accurate estimates of

fatigue life than the methods discussed above.

A great deal of research on fatigue is concerned with estimating the usable lifetime

of structures that are subjected to complicated loading. These studies are usually broken

into two cases, one where the structure experiences significant plastic deformation and

one where the deformation is predominantly elastic. When the strains are sufficiently

large to induce plastic deformation, the damage mechanisms are different from the case

where elastic behavior predominates. Since the structure lasts considerably longer when

the strains are elastic, this situation is referred to as high-cycle fatigue. In studies of

acoustic fatigue, the strains are considerably smaller still and damage accumulates very

slowly. Acoustic fatigue is a special case of high cycle fatigue.

In contrast to plastic, or low-cycle fatigue, in which damage can be directly measured

by observing the growth in crack length, the damage in high-cycle fatigue is microscopic

and during the majority of the structure's life, it can only be measured using sophisti-

cated techniques. It is assumed that unobserved damage accumulates over the life of the

structure. The time duration for this damage to result in failure is the fatigue life.

Although the strains in high-cycle fatigue are primarily elastic, damage is always

associated with inelastic behavior. It must be assumed that while the majority of the

material responds elastically, there must be high strains at specific locations within the

structure that result in microscopic damage. In acoustic fatigue studies, the deflections,

stresses, and strains are estimated with the assumption of elastic response but the damage

estimation should be based on considering the strains to be plastic.

It is well known that when a material experiences cyclic plastic deformation, a hys-

teresis loop is observed in a plot of stress versus strain. While it may not be possible

to measure the stress and strain at microscopic areas where damage occurs in high-cycle

fatigue, it is reasonable to assume that a hysteresis loop exists. This is the basis of modem

damage counting schemes such as Rainflow cycle counting.

Rainflow cycle counting was first proposed by Matsuishi and Endo in 1968 [1]. Prior to

this development considerable effort had been made to construct a cycle counting scheme

that correlated with a physical understanding of the damage process and with experimental
results.

The most often cited work on acoustic fatigue prediction is that of J.W. Miles [2]

as discussed in section II. In this paper a remarkably simple formula is presented for

estimating the fatigue life of a simple panel subjected to random loading. It is assumed

that the strain response is dominated by that of the first resonant mode so that it may

be considered to be a narrowband process. This narrowband assumption greatly simplifies
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the estimation of fatigue life becauseit may then be claimed that whatever the damage
mechanism,there will be a damagingeventfor eachcycleof the oscillating strain or stress.
By assuming that the rate at which damage occurs is equal to the oscillation frequency,

one can use the probability density for stress maxima to compute the expected value of

the fatigue life. The details of the calculation are given in references [2-4].

Although the response of complex structures can rarely be considered a narrowband

process, there has been considerable motivation to assume that damage is easily related

to some statistic that can be readily calculated. If one assumes that damage occurs each

time the stress or strain experiences a maximum or minimum it is possible to employ a

similar formulation to that of Miles [2] to estimate fatigue life. An expression for the

probability density of strain peaks in a wide-band random process is given in [4]. This

result depends on the ratio of the expected number of zero crossings at positive slopes to

the expected number of peaks. This quantity is easily computed from the response power

spectral density. An example of the application of this approach is given in the previous

sections and is also presented in Vaicaitis and Choi [5].

While the assumption that damage occurs for each strain peak has been primarily

motivated by its mathematical utility, there have been several attempts to justify it ex-

perimentally. Broch [6] conducted an extensive fatigue test using a total of two hundred

samples. Half of these samples were driven such that response behaved like a one degree of

freedom system and the remaining samples responded as two degree of freedom systems.

An attempt was made to control the experiments so that the mean square response levels

and the total number of zero crossings were the same for each sample. In the one degree

of freedom tests the ratio of the number of zero crossings to the number of peaks, o_, was

approximately unity and in the two degree of freedom tests the ratio was 0.275. An at-

tempt was made to correlate the data using the known statistics of strain or stress peaks.

It was concluded that further work was necessary before firm conclusions could be drawn.

HiUberry [7] conducted a similar comparison of the effect of response bandwidth where

one set of data was obtained using narrowband response and the remaining data was

broadband. In his broadband data, however, the ratio of the number of zero crossings to

the number of peaks was 0.79 which is not significantly different than unity as in the case

of narrowband data. Only minor differences were detected in the fatigue lives due to the

different loadings. In a later work, Linsley and Hillberry [8] conducted fatigue tests with

loadings that had significantly different spectra but identical peak probability densities.

It was found that the fatigue lives were very similar even though the response spectra

were quite different. They concluded that the peak probability density contained all the

necessary information for fatigue predictions.

While Linsley and Hillberry's result [8] is interesting and lends support to the claim

that peak counting may be sufficient for fatigue prediction, it is found that two signals that

have the same peak probability density could also have similar damage rates as predicted

using Rainflow counting. This was observed by Wirsching and Shehata [9] who estimated

fatigue lives using Rainflow counting on simulated data sets that had eleven different power

spectra. These spectra had c_ ratios that varied from 0.218 to 0.998 . It was found that

the mean and standard deviations of stress cycles as determined by Rain/tow counting are
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directly related to or. The authors conclude that for the purpose of estimating fatigue life,

the spectral shape of the response can be characterized by the total power and or. Further

justification of this claim is needed.

Since the early seventies, there has been general agreement that for complicated ran-

dom loading it is necessa,-'y to use a scheme such as Rainflow counting to obtain reliable

fatigue estimates. This type of procedure is especially helpful in properly accounting for

the effects of mean stress superimposed on the fluctuating loads. The mean stress could

be the result of very low frequency oscillations such those caused by thermal stress, geo-

metrically nonlinear in-plane strains due to large deflections, or low frequency structural

modes. The effect of mean stress could be very important in acoustic fatigue analysis.

The manner in which Rainflow counting accounts for mean stress is illustrated in figure

III.l.1 which is taken from reference [10]. The key to the method is to attempt to count

closed hysteresis loops. As discussed above, although these stress-strain hysteresis loops

may be unobservable due to the difficulty of measuring stress and strain at the locations

of damage accumulation, there must be some hysteresis in the structure because damage

will never occur if the response is perfectly elastic. Hysteresis loops associated with two

rather similar strain time histories are shown in figure III.l.1. In each time history a

single large amplitude strain cycle occurs before the strain oscillates at a lower amplitude.

The difference in the two time histories shown is that the half cycle preceding the smaller

amplitude oscillation is negative in history A and positive in history B. As indicated in the

figure, the hysteresis loops corresponding to these cases show that for history A, during

the small oscillation cycles there is a positive mean stress, a0, and for history B the mean

stress is negative during the small amplitude cycles. The damage associated with these two

histories is expected to differ substantially because it is known that a positive mean stress

can shorten fatigue life and a negative mean stress can lengthen it. It is important to note

that older cycle counting schemes (such as simple peak counting) that do not consider the

hysteresis loops will predict identical damage rates for these two time histories.

To understand the way Rainflow counting accounts for hysteresis we need to describe

the method in detail. There are many excellent descriptions of the approach that are

available in the literature. The following is adapted from reference [10].

The Rainflow counting procedure is best visualized by viewing the strain time history

with the time axis pointing downward as in figure III.1.2 (adapted from reference [10]).

The method gets its name from constructing cycles by imagining rain flowing downward

with the strain curve acting like a series of roofs. The first step is to rearrange the time

history so that it begins and ends at the strain value of greatest magnitude in the block of

data. This rearrangement of the data is justifiable because the response is considered to

be a stationary random process. A shift in the time axis will not affect the statistics. It is

assumed that rain begins to flow at the beginning of the trace at point A in figure III.1.2

and at each strain reversal in the time history. To identify the closed hysteresis loops a

number of rules are applied to the falling rain. The rain is assumed to continue flowing

downward unless:

a. The rain began at a local maximum (peak) and falls opposite a local maximum greater

than that from which it came.
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b. The rain beganat a local minimum point (valley) and falls opposite a local minimum

point greater (in magnitude) than that from which it came.

c. It encounters a previous rainflow.

Figure III. 1.2 illustrates the appfication of the method. The dots indicate the initiation

of raJnflow at each reversal in the time history.

A. Rain flows from point A over points B and D and continues to the end of the history

(which is point A again) since none of the conditions for stopping rainflow are satisfied.

B. Rain fows from point B over point C _d stops opposite point D, since both B and

D are local maximums and the magnitude of D is greater than B (rule a above).

C. Rain flows from point C and must stop upon meeting the rainflow from point A (rule

c).

D. Rain flows from point D over points E and G and continues to the end of the history

since none of the conditions for stopping rainflow are satisfied.

E. Rain flows from point E over point F and stops opposite point G, since both E and

G are local minimums and the magnitude of G is greater than E (rule b).

F. Rain flows from point F and must stop upon meeting the flow from point D (rule c).

G. Rain flows from point G over point H and stops opposite point A, since both G and

A are local minimums and the magnitude of A is greater than G (rule b).

H. Rain flows from point H and must stop upon meeting the rainflow from point D (rule

c).

The events identified above may now be combined to identify complete cycles, or

closed hysteresis loops. The rainflow from A to D and from D to A forms a complete cycle.

Another cycle is formed by the flow from B to C and from C to the strain level at B (in

the line connecting C and D). There are also cycles formed between strain ranges E-F and

G-H.

The rainflow process identifies cycles that are associated with closed hysteresis loops

as indicated in figure III.1.3. This figure shows the loops that correspond to each cycle.

The strain maxima are each located at a tip of a loop. After the strain goes from A to B

it decreases to C. As the strain increases from C it reaches the level of B again while on its

way to D. The Raimqow counting procedure correctly indicated that there is a hysteresis

loop between B and C which is a complete cycle contained within the larger loop between

A and D.

Once the cycles and associated strain ranges are identified the, Palmgren-Miner linear

damage accumulation rule may be applied [11]. This rule states that we may simply add

the incremental damage (or life used up) due to each cycle to estimate the fatigue life. The

damage due to one cycle may be expressed as

ADi = I(
1/2ASi

c 1 - S---_i/S. )b, (III.I.I)

where ASi is the stress range of the cycle, Smi is the mean stress of the cycle, Su is the
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ultimate strength of the material, and b and c are constants obtained from a S-N diagram

for the material with constant amplitude loading. The manner of incorporating the mean

stress in equation (III.l.1) is after Morrow [12]. The total damage is simply

D = _ AD,. (III.1.2)

Failure is assumed to occur when D = 1.

III.2 Experimental Verification of Rainflow Counting

There have been a number of experimental studies to verify the accuracy of fatigue

prediction schemes. In the following, we will describe two reports that address issues

that are relevant to acoustic fatigue studies. The two most commonly cited works on the

experimental verification of Ralnflow counting are those of Dowling [13] and a program

conducted by the SAE Cumulative Fatigue Damage Division [14]. In Dowling's study

a total of 83 specimens were tested to failure. His main purpose was to construct a

fatigue prediction procedure that could account for the effects of the sequence of the strain

cycles and could also account for fluctuating mean stresses. A number of complicated

load histories were used. Data is presented which indicates that Rainflow counting does

a very good job of handling time histories where small, high frequency oscillations are

superimposed on top of large amplitude, low frequency oscillations.

Signals that have small fluctuations added to large low frequency oscillations are

commonly seen in the response of complex structures where large amplitude low frequency

modes coexist with an uncountable number of high frequency resonances. Simplified time

histories that have this feature are shown in figure III.2.1 (taken from Dowling [13]).

The traces a and b shown in the figure would have identical fatigue lives if simple peak

counting were used. Dowling showed that the actual fatigue lives of specimens will differ

substantially with these two types of response and that the difference in fatigue life is

accurately estimated only if a procedure such as Rainflow counting is used.

Tests were conducted by adding two sine waves to obtain stress and strain histories

as shown in figure III.2.2 a ( again taken from reference [13]). In these tests the amplitude

of the small, high frequency fluctuation was held constant and the amplitude of the low

frequency component, z_el, was varied. Figure III.2.2 b shows that his prediction procedure

using Rainflow counting accounts for changes in/kel remarkably well.

The data of figure III.2.2 correspond to a low cycle fatigue test where the material

experienced significant plastic deformation. This is apparent in the figure because the

traces for strain and stress differ substantially. Another set of specimens were tested

where the strains were predominantly elastic so that high cycle fatigue mechanisms would

be encountered. Typical stress time histories for these tests are shown in figure III.2.3. In

this case a high frequency sine wave was superimposed on a lower frequency triangle wave.

The amplitudes of the high frequency sine wave and the low frequency triangle wave were

held constant. The fatigue lives were measured and predicted for a range of values of the
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frequency of the triangle wave. Comparisons of the measured and predicted results are

shown in the figure. Note that the vertical scale spans only one decade so that the error

is roughly a factor of two. This is quite good agreement for a fatigue prediction.

A similar test to that of figure III.2.2 was conducted where the maximum stress range

was kept constant, Aal = 100 , but the relative amplitudes of the low frequency and

high frequency components were varied, tt was found that as the amplitude of the high

frequency component was increased, the fatigue life was reduced dramatically. The results

are shown in figure III.2.4. It should be noted that simple peak counting would not predict

that the amplitude of the high frequency component would have a major effect. This is

because the rate at which peaks occur is held constant and the peak amplitude distribution

is not changed substantially. Rainflow counting, however, does a remarkably good job of

accounting for this.

In the results shown in figures III.2.1 through III.2.4 the stress and strain time histo-

ries essentially contain subcycles with varying lower frequency (mean) fluctuations. It is

well known that compressive mean stresses reduce damage and that tensile mean stresses

increase the rate of damage accumulation. Rainflow counting enables one to account for

these two effects for each cycle identified by the procedure as indicated in equation (III. 1.1).

A number of other experiments were reported by Dowling [13] which will not be dis-

cussed here. These tests included other complicated time histories. He did not, however,

conduct a comprehensive evaluation of Rainftow counting for very high cycle fatigue prob-

lems with loadings that are as complicated as •encountered in acoustic fatigue. One may

conclude, however, that Rainflow counting should lead to vastly more accurate estimates

of fatigue life than methods that are often used in acoustic fatigue studies.

Another study that is often cited in support of the use of Rainflow counting is a

joint effort by the SAE Cumulative Fatigue Damage Division [14]. In this, study three

different complex loadings were applied to notched steel specimens. A total of 57 specimens

were tested. The load time histories used are shown in figure III.2.5. The time history

corresponding to bracket vibration shown in the figure most closely matches that seen in

aerospace structures. The response power spectra for these histories were, unfortunately,

not presented in the report. A comparison of predicted and measured fatigue lives is shown

in figure III.2.6. In these predictions the Rainflow counting method was used to identify

cycles as discussed in Section II.

An investigation is described in reference [14] of the effect of mean stress on fatigue

life. Predictions were made with and without mean stress included. This was accomplished

by either including or neglecting 5',, in equation (III.l.1). As discussed above, tensile mean

stress is known to reduce fatigue life while compressive mean stress increases it. It was

found that for a time history where the average stress was near zero, the reductions and

increases in fatigue life due to fluctuating mean stresses tend to cancel out. It is likely

then, that for Gaussian time histories with zero mean, the mean stress effect may be safely

ignored. When the structure responds nonlinearly, however, such that in-plane stretching

strains are significant, the mean stress effect could be quite substantial.

It should be pointed out that the tests conducted by Dowling [13] were conducted

on smooth samples with uniaxial loading and the tests discussed in reference [14] were
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conductedon notchedspecimensin tensionand compression.Noneof the studies reviewed

to date examined fatigue where the primary mode of deflection is in bending as it is in

acoustic fatigue. It is possible that this could affect the applicability of these studies to

the acoustic fatigue problem.

A large number of other studies have compared experimental fatigue measurements

with predictions. We have attempted to limit our attention to those studies that relate to

the acoustic fatigue problem. This means that those studies that investigated low cycle

fatigue are excluded. Low cycle fatigue is important if acoustic fatigue tests are accelerated

by increasing response levels to the point where plastic deformation is significant. This

would drastically change the results and care should be taken when high level tests are
designed,
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IV. Power Spectral Density of Multi-Mode Systems

In the following sections a comparison is presented of fatigue lives predicted using

simple peak counting to those obtained using Rainflow counting. The results presented

indicate that when a signal contains significant low frequency oscillations there can be

considerable difference between the fatigue lives predicted by the two methods. Further

work is needed to compare the methods in typical aerospace applications.

The comparisons of fatigue lives estimated using peak counting and Rainflow count-

ing to be presented in the following were performed using a time domain simulation of

the response. An attempt has been made to simulate the response of typical aerospace

structures. The method of simulating the time domain signal is presented in section V.

The method depends on the response power spectral density. It is possible to accurately

simulate the time domain response corresponding to any given power spectrum. In the

present study, power spectra are created to model 'typical' structures that have nine reso-

nant modes. The calculation of the response spectrum of a multi-mode system is presented

in the present section. By processing the resulting time histories to predict fatigue lives,

it is then possible to examine the influence of changes in the response spectrum (such as

modifying the relative contribution of various modes) on the fatigue estimated by the two
methods.

In the present study, fatigue lives were calculated for systems having nine resonant

modes over the frequency range from 0 to 2000 Hertz. As will be discussed in section

VI, it is found that by increasing the relative contribution of the lowest frequency mode,

substantial differences are observed between the fatigue lives obtained using peak counting

and those estimated using Rainflow counting. In every case, peak counting produced

shorter lives than did Rainflow counting.

It should be noted that the fatigue estimates using peak counting performed here are

not based on the single degree of freedom assumption of reference [2] of section III. Fatigue

estimates using the single degree of freedom approach differed from those obtained using

Ralnflow counting by factors ranging from 48.69 to .0098. This method can be either highly

conservative or very nonconservative depending on the system's spectral characteristics.

The primary result of the present comparison is that P,ainflow counting produces

significantly different fatigue life predictions than simple peak counting. This can also

be seen by examining the Rainflow counting method. When low frequency oscillations

are present in a signal along with high frequency components, peak counting will produce

substantially shorter fatigue lives than Rainflow counting. While this is welt known for

certain time histories, it has not been demonstrated that Rainflow counting is necessary

for time histories that are typically encountered in acoustic fatigue applications. The

preliminary results presented here indicate that Ralnflow counting is necessary in acoustic

fatigue studies.

In the following, expressions are developed for the power spectral density of the re-

sponse of a system that is subjected to Gaussian white noise excitation and that has a

number of resonant modes. This will allow one to construct the power spectrum of the

stress or strain response given the system resonant frequencies, modal damping ratios, and
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the relative contributions of the modes. The results of this section will be usedin section
V to createpower spectraof simple multi-mode systems.

Supposethe deflectionat somepoint canbe expressedas

OO

w(x,y,t) = _ ,_(t)¢i(x,_), (rv.1)
i=l

where ¢i(x, y) are eigenfunctions and ai(t) are modal responses. In a linear system ai(t)
are solutions to

i_i+2wi_i&i+w_ai=Qi(t) ,i = 1,2,..., oo

= qifo(t). (IV.2)

We will assume that qi is some constant, fo(t) is Gaussian white noise, wi is the natural

frequency of the ith mode, and (i is the damping ratio.

The strain at some point on the structure may be expressed in the form

OO

,(t) = _ a,_,(t),
i=l

(rv.3)

where the ai indicate the contributions of the various modes.

The solution for oq(t) in equation (IV.2) is

t

_(t) = f hi(¢)qdo(t - _')d_'
0

(IV.4)

where

e-_ i_r' . [ r- \
= _. , >O. (IV.5)

_/1- _

It is assumed that ai(t) = 0 for t < 0. We may compute the power spectral density of the

strain, e(t), by first computing the strain auto correlation function,

R,(_-)= S[_(t),(_+ r)], (w.6)

where E[.] denotes the expected value. The strain is assumed to be a weakly station-

ary random process. The power spectral density of e(t) is then obtained by the Fourier

transform of equation (IV.6),

OO

,/¢,(,..,)= _ -R-(_')_-_'"dT. (IV.7)
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where

Substituting equation (IV.3) into equation (IV.6) gives

R.(T) = E a_(t)_i(t + , ,
- j=l

i=1 j=l

= E EaiajR':"a_ (v)'
i=l j=l

(IV.S)

(IV.9)

(Iv.a0)

n_,_,(r) = E[_(t)_j(t + r)] (IV.11)

is the cross correlation function for _i(t) and _j(t). Our assumption that the process is

weakly stationary causes this cross correlation function to be independent of t. Substituting

equation (IV.10) into equation (IV.7) and rearranging gives

OO

1 oo o_ [
g2ee(w) = 2-'7 E E aiaj j Ra,_i(r)e-i_rdr, (IV.12)

i=1 j=l --00

OO

=

+ r- r')dr')]

(IV.13)

(IV.14)

(IV.15)

i=l j=l

where the cross power spectral density of _i(t) and _j(t) is

OO

1

O_,o_(w) = 2-_r / R°'_i(r)e-i°'_dr
--00

Substituting equation (IV.4) into equation (IV.ll) gives

t t+r'

R_,_,(r) = E[(f hi(r')qifo(t - r')dr') ( I hj(r')qif°(t

0 0

t t+r'
t t

qiq_ I I hi(r')hj(r")g[fo(t- r')fo(t +r-r")]dr"r'
0 0

The excitation, fo(t), is assumed to be stationary Gaussian white noise so that

E[fo(t - r')fo(t + r - r")] = 27rCfo 5(r + r'- r"), (IV.16)

where 6(-) is the Dirac delta function and 4Io is the two-sided power spectral density of

fo(t). Substituting equation (IV.16) into equation (IV.15) and integrating over r" gives

7"

R_,_i (r) = 2rrqiqi / hi(r')hj(r + r')C}fodr'. (IV.17)

P

0
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Becausehi(v I) is zero for r' < 0, the lower limit of integration may be replaced by -c_.

Since we are interested in the stationary cross correlation of ai and aj, the upper limit of

integration may be replaced by cx_,

Ra,_s (7") = 2r:qiqj / hi(r')hj(r + r')f y.dr'.

Substituting equation (IV.iS) into equation (IV.14) gives

+ r')e-i_rdr'dr. (IV.i9)

Multiplying the integrand by e -i_''. e i_r' gives

//+a,as(w ) -- qiqjOi, hi(r')eiWr' hj(r + r')e -'w(r+r )dr dr.

_ 00 _ OO

(IV.20)

Integrating over r and then over r' gives

(to)= q qi+1.Hi(to)Hi(to), (IV.21)

where

Hi(to) = f hj(t)e-i_'dt, (IV.22)

--00

is the complex frequency response function for the jth mode. H*(to) is the complex con-

jugate of Hi(to). Substituting equation (IV.5) into equation (IV.22) and carrying out the

integration give
1

Hi(to)= 2_ to2wj + 2itoj_jto (IV.23)

Substituting equation (IV.21) into equation (IV.12) gives the power spectrum of the strain,

CX_ O0

+,,(to) = Of, E E aiajqiqiH*(to)HJ(to)"

i=l j=l

(IV.24)

In cases where _i is sufficiently small for all i, the double sum in equation (IV.24) will be

dominated by the terms in which i = j. In this case

+,,(_) _ +I. _'_ a_q_ln'(w)l 2, (IV.25)
i=l

which is easily computed if the sum is truncated to a reasonable number of modes.
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Section V. Simulation of the Random Time Series

Given the power spectral density obtained analytically for a multi-degree- of-freedom

system as described in the previous section, or obtained experimentally, one can construct

a time series that will have the desired power spectrum. The method is primarily due

to Rice [1] and it was modified to be computationally efficient by Yang as discussed by

Shinozuka [2]. If _ls(w ) is the single sided power spectrum of the desired signal, s(t), then
s(t) may be approximated by [1]

N-1

nw.._.0

where Cn are uniformly distributed random numbers on the interval from 0 to 27r and

_o,, = niA-,, (V.2)

with

,,A_= wma=/N, (V.3)

where w,n_, is the maximum frequency in the power spectrum el(w), and N is the total

number of terms in the summation in equation (V.1).

Equation (V.1) simulates the time series as a distribution of sinusoidai signals having

random phases. Unfortunately, this expression requires the computation of a large number

of cosine functions at each desired value of the time, t. A considerable improvement in

computational efficiency can be obtained by recasting equation (V.1) to allow the use of

the Fast Fourier Transform. To accomplish this, note that equation (V.1) may be written
as

N-1

= n<[vf (v.4)
n----0

where Re[.] denotes the real part and _ is x/%-'i-.

If the simulated time series, s(t) is needed only at discrete values of time, t, then let

,k = ,(tk) = 4kAt),

where the time duration between the equally spaced sample times is AAt.

equation (V.4) at t = tk gives

(v.5)

Evaluating

N-1

4k,",t) = R<[v"5
n--O

(v.6)

To satisfy the Nyquist sampling criterion, the time series, s(t) must be sampled at

a high enough rate to obtain two samples during one period of the highest frequency

component in the original input power spectrum, ¢](w). This gives

2_ 1
At -- (V.7)

(._max 2 °
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Substituting equations (V.3) and (V.7) into equation (V.6) gives

N-1

n-_-0

(v.s)

Equation (V.8) may be evaluated using a Fast Fourier Transform (FFT) algorithm by

noting that given a discrete sequence, an, the FFT provides an efficient means of computing

Ak, where
N-1

Ak = _-_ a,e -i2'_kn/g, for k=0,1,2,...,N-1. (V.9)
n_0

Equation (V.8) may be evaluated using a FFT by defining a sequence,

an= for n < N- 1
=0, for n>_N. (V.10)

Equation (V.8) may then be written as

2N-1

= a,e _N ], for k=0,1,2,...,2N-1, (V.11)

n----0

where sk = s(kAt). Because we are taking the real part of the result of the summation,

taking the complex conjugate of the right side of equation (V.11) gives

2N-1

sk = Re[x/_ _ a,_e- _"_1, for k = 0,1,2,...,2N- 1. (V.12)

This is equivalent to

sk = V_Re[FFT(an)], (v.13)

where FFT[.] denotes the Fast Fourier Transform. Note that the length of the sequence,

a,, is 2N.
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Section VI. Comparison of Peak Counting and Rainflow Counting

In this section time domain signals having a variety of spectral characteristics are

processed to compare the fatigue life predicted using simple peak counting and rainflow

counting. The goal is to identify features of the power spectrum that result in significant

differences between the two damage counting methods. The methods described in the

previous sections permit the construction of random time series corresponding to systems

having any given spectral properties. From the discussion of section V one can construct

the power spectrum of a resonant system having any number of resonant modes with

specified resonant frequencies and modal damping ratios. It is also possible to create a

random time series from a power spectrum that is obtained experimentally.

Figures VI. 1 through VI.6 show simulated time series and corresponding power spectra

for systems modeled using the method of section V. These systems have nine resonant

modes in the frequency range from 0 to 2000 Hertz. An attempt was made to create systems

having spectral characteristics that mimic those seen in actual aerospace structures. The

power spectra are shown in decibels by plotting lOLoglo(power spectrum). Both the

actual input power spectrum and the power spectrum computed from the simulated time

series are shown. Since the two curves are indistinguishable, it can be seen that the

simulation procedure reproduces the desired spectral properties. Figure VI.2 shows the

power spectrum corresponding to the time signal in figure VI.1, figure VI.4 contains the

spectrum for the signal in figure VI.3, and figure VI.6 shows the spectrum for figure VI.5.

As the power spectrum plots show, the time series differ only in the relative contribution

of the first resonant mode. The figures showing the time series contain only the first 10 %

of the simulated signal.

The simulated time series were processed to estimate the fatigue life using peak count-

ing and Rainflow counting. The ratio of the fatigue lives calculated by each method is

shown on each plot. Between 4500 and 5000 damaging events were identified in each case

shown. In these calculations the constant, c, in equation (III.l.1) will cancel when the

ratio of the fatigue lives are compared. The exponent, b in equation (III.l.1) has been
taken to be 6.

In figures VI. 1 and VI.2 the first resonant mode has a relatively low amplitude. In this

case the ratio of the fatigue lives computed using peak counting to Rainfiow counting is

.5910. In figures VI.3 and VI.4 the amplitude of the first mode is increased so that the time

series shows a significant low frequency component. In this case the ratio of the estimated

fatigue lives using the two methods is .1639. As the amplitude of the first mode is increased

further as in figures VI.5 and VI.6, the ratio of the estimated fatigue lives reduces to .1333.

The fatigue life predicted using Rainflow counting is then greater than that estimated by

peak counting by roughly a factor of 7.5. When low frequency oscillations are present in

the signal, peak counting significantly underestimates the fatigue life.
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VII.1 Nonlinear Regression for Fatigue Parameter

Any fatigue prediction procedure requires certain empirically derived constants to

characterize the structure's fatigue properties. In acoustic fatigue studies this data is

usually obtained using a coupon test with narrowband random excitation. The S/N curve

obtained from this test is then used to identify the fatigue constants. The application of this

data to a broadband random load, as the structure is likely to experience in service, requires

certain assumptions. The successful prediction requires that one is able to accurately

account for the complex time histories encountered under broadband loading. The method

of Rainfiow counting us discussed in previous sections is intended to accomplish this.

Although Rainfiow counting has been used successfully in accounting for complex

loadings it seems more direct (and therefo_ more accurate) to acquire the fatigue constants

using a load history that more closely resembles the service environment. A procedure that

could identify the necessary constants when complex loadings are used could also be applied

to determine fatigue properties from in-service failures. The goal of the present section is

to develop a fatigue characterization method Which can be applied with arbitrary loadings.

The fatigue characterization scheme examined in the present effort begins with sets of

data consisting of the time to failure along With the corresponding stress or strain power

spectral densities. This data could be obtained either in tests of complex structures or in

tests of simple coupon samples. Suppose that the measured fatigue lives are Tj and the

corresponding spectra are ¢i(w). Using the methods of reference [3] one can construct a

simulated random time history and perform cycle counting to obtain a histogram, Pij, to

describe the number of damaging events identified at each stress range, Sij, for each power

spectrum _j(w). If the simulated time histories each have a duration r, then the damage

experienced by the structure should be

Dj =  ITj. (VII.l)

If there are M sets of fatigue lives and corresponding power spectra then the problem

of estimating the fatigue coefficients, b and c, may be expressed as one of minimizing the

total squared error,

e(b, c) -- _ (D i - __, Pii" ASi (VII.2)
j=l i=l

where, b and c are constants depending on the materials, and b typically varies from 1 to
6 while c from 102o to 103°.

The problem of identifying b and c to minimize the error in equation (VII.2) may be

simplified by replacing c by a new unknown, v,

Co
c = vb (VII.3)

where, Co is a suitable constant. The choice of Co will be discussed later.

58



Substituting equation (VII.3) into equation (VII.2) gives,

e(b'v) = _(DJ - _ (v" Sij)b )
j=l i=1 "CS Pij" /_Si

(VII.4)

or in general form,

j=l i=1 C-'°
(vii.5)

This is a modified mathematical model for identifying xl and x2 (b and v) instead of b and

c so that the property of the error function e(b, c) can be improved.

To identify zl and z2, a combined Newton-PoweU method is used in this project

because of the special property of the error function e(xl, x2) (or e(b, c)) which will be

discussed in the coming section of this report.

Given the nonlinear function e(xl, x2), let

X = (Xl'X2)T = ( xl )X2' (VII.6)

The Newton method solves this problem by expanding e(X) in a second order Taylor series

about an estimate of the desired values of (xl,x2) T, X I' I, k T= (zl, x 2) . This procedure will

enable us to obtain an improved estimate X k+l = (xkl +1, xk2+l)T. In matrix form,

,(x) = ,(x k) + wr(xk). (x - x k) + _(x - xk) r •a(Xk). (X - Xk) (VII.7)

where, e(X k) is the functional value of e at X k, and,

ve(X k) = 0x,
oe(_,_2)

Oz2 X=X_

(vii.s)

and,

_Xl

02.(_t,_2)
A(X k) = ox_

Oz2Ozl
a2e xl"')l0z x0z2

Oz_ X=Xk

M N

i=1 i=1 Co

. (_ _ ln(x2 " S,j) " (x2 " Sij)ZX pij . /%Si )
i=1 Co"

(VII.9)

(vii.11)
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_X2

M N

j=l - i=1 Co

(_ _ (xl " SiJ) " (x2 " SiJ)zx-lpij . iSi)
i=1 Co

O2e(Xl_X2) -2z[(_,- _x,._,,).,_,.,,
j=l i=1 Co

i=l Co

( _ )']
i=1 Co

O2e(Xl_ X2)

0X 1 _X 2

O2e(Xl,X2)

OX2 _x I

and,

(VII.12)

(VII.13)

(VII.14)

O_e(xl,=_) M N

j=l i=1 "C'-0

.(_i_-_,-,_-,_,,._,.,,_-,-' _,)i=l Co PO "

+ (_ _ (=, " S,,)'(z2 " Si,)"-'p_i . AS,) 2]
i=1 Co

(vii.15)

To find the minimum point, let

w(X) = A(X_) •(X - Xk)+ w(X k) = O, (Vli.16)
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Solving equation (VII.16) for X leads to an iterative procedure to determine the next
estimate X k+l ,

X = X TM = X k - A(Xk) -1 • _Te(Xk), (VII.17)

where, A(Xk) -1 indicates the inverse of matrix A(Xk). It is assumed that A(X k) is a

positive definite matrix and its inverse exists.

As it will be discussed in the coming section, for the error function given in equation

(VII.5), the matrix A(X k) will become singular when X k is near the minimum point of

e(X). This suggests that, although the Newton method does an excellent job when X k

is far away from the minimum point for this problem, it will fail when X k is near the

optimum approximation of b and c. To obtain the optimum estimate of b and c, we use

the Powell method [4] to find the optimum values of b and c when the Newton method

begins to fail to do so.

Here is how Powell method goes:

Initialize the set of directions S i to the base vectors,

S 1 = (1, 0, 0, ..., 0) T, 8 2 --" (0, 1, 0, ..., 0) T, ..., S N -_ (0, 0, 0, ..., 1) T

Now repeat the following sequence of steps ("basic procedure") until the function stops

decreasing:

• Save the initial estimation of X as X °.

• For i = 1,...,N, move X i-1 to the minimum along direction S i and call this point
X i .

• For i = 1, ..., N- 1, set S i _-- S i+1.

• Set S N_x N-x °.

• Move X N to the minimum along direction S N and call this point X °.

In addition, some modifications have been added to the basic procedure to ensure a

reasonable rate of convergence.

VII.2 Identifiabillty of Parameters b and c

As mentioned in the previous section, the error function e(b, c) possesses some special

properties. This affects the identifiability of parameters b and c. First, we can make a

simple observation. When carrying out a fatigue test, we excite a structure by using a

random loading with a specified stress power spectrum, such as what was done in Cleven-

son's [5] and Ramesh's [6] fatigue tests in which each specimen was loaded at a constant

root-mean-square stress level with a given shape of stress spectrum (as shown in figures

(VII.l) through (VII.9)) until rupture occurred. In order to estimate the fatigue parame-

ters b and c using the method developed in this project, the data of the root-mean-square

stress and the stress spectral shape are used to construct the stress spectrum under this

certain test condition. We will assume that a set of fatigue lives, Tj,j = 1,2, ...,M, have

been measured and that the corresponding stress power spectra, Sj(w),j = 1,2,...,M,
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are known. The methods of reference[3] are usedto construct a simulated random time
history during a record of duration r (as shown in figures (VII.10) through (VII.18)) for

each fatigue test. Rainflow cycle counting is then used to obtain a histogram of the levels

of damaging cycles, P_i (as shown in figures (VII.19) through (VII.27)), where the index i

corresponds to the damage level and j indicates the test specimen number. The value of

Pij •/kS_, as in equation (VII.2)), describes the number of damaging events identified at

each stress range Sij during a record of duration r. Therefore, b and c should be constants

such that,

N S_j
r _ P,"-ASi j = 1,2, M. (VII.18)

Dj= _= i=l c u ""_

Since the fatigue characteristics of a given material are assumed to be described by the

two constants, b and c, it is hoped that for any given set of test data, a unique pair of values

of b and c may be determined. Unfortunately, due to the nature of fatigue measurements,

an error in the determination of b can be partially off-set by adjusting c. This problem

comes about when b and c are to be identified in tests conducted with simple deterministic

load histories as well as in the more complicated situation considered here.

First consider the case where the load history consists of a pure tone so that the number

of damaging cycles is easily determined. A typical S/N curve for sinusoidal loading [5] is

shown in figure (VII.28).

Figure (VII.29) shows estimated fatigue curves having significantly different values of

b and c. The values of b and c for each curve are shown in the figure. It is found that if one

parameter, either b or c, is chosen incorrectly, then the other parameter may be adjusted

to compensate for much of the error. Figure (VII.29) shows that values of c varying over

two orders of magnitude can give reasonable results as long as b is adjusted accordingly.

A similar affect to that seen in figure (VII.29) is also observed in the more general

loading case considered here. To illustrate the 'near' dependence of b and c in this case,

consider the problem of finding b and c when there is only one set of measured fatigue test

data. In this case equation (VII.2) becomes,

N 2

i=I C zJ

Figure (VII.30) shows the error, e(b,c), as computed using equation(VII.19) for a

range of values of b and c. The figure shows that for each value of b, a value of c may

be found to cause the error to be zero. Onecan then use equation (VII.19) to construct

a relationship between b and c which gives e(b,c) = 0, as shown in figure (VII.31). This

relation between b and c may be obtained for each fatigue test specimen if a series of tests

are conducted. Figure (VII.32) shows the relationships between b and c which give zero

error for 4 different tests [5] having spectra identified as A, B, C and D. It would be ideal

if all of the lines intersected at a particular combination of b and c. The figure shows that

the lines indicating a relationship between b and c corresponding to the different fatigue

tests are almost parallel. There is thus no ideal combination of b and c for this data. This

results in the error function e(b, c) being illconditioned.
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Another way to illustrate the near dependenceof b and c in typical test data is to

plot the error as a function of b and c as in figure (VII.33). The minimum of c(b, c) is seen

to consist of a curve rather than a point. It is obvious that there exists a narrow region

in which the value of error function is almost kept unchanged. The minimum values of

the error function with respect to b and c are shown in figure (VII.34) and figure (VII.35),

respectively, in which it can be found that the minimum value of e(b, c) just changes very
slightly while b varies from 3.5 to 5.5 and c from 1019 to 1028. This results in the failure of

Newton Method for this problem when the iteration point approaches this narrow region

because where the matrix A(X k) will become near singular. This also suggests that a

range of values of b and c will give almost equally good estimates to the data.

There axe many situation where we can find some general empirical relationship be-

tween fatigue constants [7]. When the S/N curves for some steel alloys are plotted in

nondimensional form using the endurance limit, Se, and the ultimate strength, S_, they

tend to follow the same curve shown in figure (VII.36). A power relationship is recom-

mended to be used to estimate the S/N curve for steel:

S=10 v.Nb(for103 <N< 106 ) (VII.20)

where the exponents, C and b, of the ,.,¢/N curve are determined using the two defined

point shown in figure (VII.37):

__1 S_o (S'°°°)2 (VII.21)b = loglo o, C = loglo S,

where, alternating stress level corresponding to a life of 1000 cycles, 5'1000, can be de-

termined as 0.9 times the ultimate strength, and when the estimate for 5'_ is made as

S_ = 0.5Su, the S/N curve is defined as

S = 1.62S_N -°'°Ss (VII.22)

This suggests that for certain kinds of steel, the SIN curve can be approximately defined

as only depending on the ultimate strength 5'_, which also suggests that fatigue constants

are not strongly independent. This results in the ill-conditioning of the error function.

In order to overcome the ill-conditioning, it is necessary to make a dimensional trans-

formation of variables. When using equation (VII.2) as the mathematical model for this

problem, the contours of the error function (with b and c as two parameters) near the min-

imum point axe often curved as in figure (VII.38) (b and c are both in linear scale because

they behave like this when we estimate the parameters using Newton Method or Powell

Method) . Here the projection of the contour has substantial length. After a nonlinear
dimensional transformation

Co
c vb (VII.3)

is made as in Section VII.l, the contours of e(b, v) near the minimum point of the error

function are as shown in figure (VII.39). This makes the estimation of b and c much more

stable than that before the transformation. It has been found that a suitable value of the

constant, Co, is Co = 2x1022 in this case.
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VII.3 Application to Existing Fatigue Data and Discussion

In order to show the advantage of the method developed in this project, it has been

applied to some existing measured fatigue data published in both references [5] and [6], in

which some statistical properties of the random loading are used to estimate the fatigue

constants and to predict the fatigue lives of the structures studied.

Fatigue tests of aluminum-alloy specimens under stationary and Gaussian random

loadings having a zero mean value were conducted in reference [5]. The random loadings

were described by power spectral densities of the form cI,(w) = Klw-2,K2w°,Ksw 2 in

a certain frequency range, where K is an arbitrary constant ( typical stress spectra are

spectrum A, B, C, and D as shown in figure (VII.l) through (VII.4)) and the fatigue

lives were determined for statistical parameters of the random loadings such as root-mean-

square nominal applied stress, power spectral shape, mean number of zero crossings per

unit time, and mean number of peak loads per unit time, etc. The corresponding fatigue

data are listed in table (VII.I), which shows root-mean-square nominal applied stress,

Srms, in psi, fatigue lives, tl, in seconds, a, the ratio of zero crossing rate to peak rate as

defined later in equation (VII.27), and the corresponding stress spectrum used in the test.

The measured data in reference [6] were obtained by fatigue tests of a number of

structural steel specimens. Five typical power spectral shapes were selected to generate

various random loading wave forms and the idealized shapes are spectrum A, B, C, D,

and E as shown in figures (VII.5) through (VII.9) by setting the filters in different ways.

Fatigue tests were conducted under different power spectral shapes, measured on the basis

of central frequencies, positive zero crossing frequencies, and frequencies of maxima. Table

(VII.2) shows the corresponding fatigue data which gives power spectral shapes used, root-

mean-square applied stress, Srms, the fatigue lives, tl, and the value of a.

To apply the method developed in this study, time histories for each power spec-

trum mentioned above are generated (as shown in figures (VII.10) through (VII.18)) and

a Rainflow counting scheme is used to calculate the damage accumulation in each case

investigated. Some typical plots of damaging densities of the stress ranges identified by

Rainflow counting are shown in figures (VII.19) through (VII.27).

The simulated damage probability densities and corresponding measured fatigue lives

may be processed as described in equations (VII.l) through (VII.5). By applying the

scheme discussed in the previous section to some of the measured fatigue data in both

references [5] and [6], fatigue constants b and c are identified and then used to estimate

the fatigue lives for all other test specimens. Figures (VII.40) and (VII.41) indicate the

predicted fatigue lives using the identified fatigue constants, which show that, with this

method, the identification of fatigue constants and the prediction for fatigue lives based

upon the Rainflow counting technique can be made with reasonable precision.

Some comparison are also made to show the efficiency of this method:

First, the effect of power spectral band width is considered. Let a be the ratio of zero
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crossingrate to peak rate. This may be computed if the power spectrum, ¢(w), is known,

oo 2

a = ½ ½. (VII.27)

The a values for tests conducted in both references [5] and [6] vary from 0.586 to

0.992, as shown in tables (VII.l) and (VII.2). This indicates that the data corresponds

to broadband and narrowband random loadings. A power spectrum with a--0.586 is con-

sidered to be a broadband random loading and when a = 1, the loading is narrowband.

The difference between narrowband and broadband spectra can be seen from typical time

histories shown in figures (VII.12) and (VII.14), which have a values of 0.695 and 0.992, re-

spectively, and the corresponding spectra are shown in figure (VII.42), where both spectra

have the same unit root-mean-square stress value.

The application of the regression method to each power spectrum used in the tests is

investigated. From table (VII.l), 32 sets of fatigue data are shown which are taken from

reference [5]. The tests were conducted using four different spectrum shapes identified as

A, B, C, and D. For spectrum shapes A, B, C, and D there are twelve, four, ten, and six

measured fatigue lives, respectively.

Figures (VII.43) through (VII.46) show the different cases of fatigue life prediction. In

each of these figures, data from one of the four spectrum shapes was used to identify b and c.

The data used to perform the regression are shown as circles. In each figure, predictions of

the fatigue lives for the data of the remaining three spectrum shapes are shown as squares.

Figure (VII.43) shows twelve circles, representing a comparison of twelve predicted and

measured fatigue lives obtained under spectrum A. These twelve circles indicate the fatigue

test data used to identify b and c while the squares indicate predicted fatigue lives based

on these constants for the rest of the fatigue data listed in table (VII.l). Figures (VII.44),

(VII.45) and (VII.46) show predicted lives in the same way as in figure (VII.43), in which

fatigue constants are identified from fatigue data obtained under the random loadings with

spectra B, C, and D as shown in figures (VII.2), (VII.3), and (VII.4), respectively.

We can also find the similarity in predicting fatigue lives using identified fatigue con-

stants from figures (VII.47) through (VII.51) in which, for fatigue tests conducted in refer-

ence [6], fatigueconstants b and c are identified from those fatigue test data under random

loadings with five different stress spectrum shapes A, B, C, D, and E, respectively. It can

be found from figures (VII.43) through (VII.51) that, with this method, the prediction

for fatigue lives under the random loading with certain power spectrum can be made al-

most equally well by using fatigue constants b and c estimated from fatigue tests under the

loading with very different power spectral shapes even under narrow band random loading.

Figures (VII.43) and (VII.47) show the extreme cases in which fatigue lives are predicted

using fatigue constants identified from the test data measured under narrow band random

loadings with a values of 0.92 and 0.99, respectively. It means if the fatigue constants b

and c are determined using narrowband test data, the prediction can also work well for

fatigue lives under broadband random loading.

65



Secondly,since Rain.flowcounting considersthe effect of each stress level, it seems
to be possible to identify fatigue constants b and c by using only one or a few more sets

of fatigue test data instead of large amount of fatigue tests. Figures (VII.52) through

(VII.60) show the predicted fatigue lives by using only one set of fatigue test data chosen

for each type of spectrum. The results show very good agreement. It is expected that, on

the consideration of economy and for the easy implementation of the fatigue test, one can

conduct a fatigue test using only one spectrum shape which is specially designed so that

damaging events occurs more evenly at each stress level.

The practical advantage of using Rainflow cycle counting to calculate the damage

accumulation in predicting fatigue life can be pointed out here. By using the Rainflow

counting technique, one can consider the effect of each stress level on fatigue life in both

identification of fatigue constants and prediction of fatigue lives even if only one set of test

data is available. Figure (VII.5) indicates a narrow band spectrum shape corresponding

to a time history as shown in figure (VII.14) which can be found to be a typical narrow

band random time history. But, from figure (VII.23), we can find that it includes as much

information about damage events at each stress level as that in the broad band case. This

is one reason that we can get almost equally good predictions of fatigue life by using fatigue

constants estimated from fatigue tests under random loadings with very different power

spectral shapes.

VII.4 Conclusions

The common method of applying narrowband random S/N data is to simply consider

the structure under study to also respond in a narrowband, random fashion. In practice,

however, a structure is expected to encounter a more complicated broadband random

excitation. A primary goal of this effort has been to develop a method of identifying the

fatigue constants when a realistic broadband random load is applied. It was felt that this

would lead to more accurate predictions. We have found that when Rainfiow counting

is used to identify damaging events and when the fatigue prediction is performed using

the methods outlined above, one can make reasonably accurate predictions of broadband

fatigue life using narrowband fatigue data.

Because the success of the present method depends strongly on the accurate iden-

tification of damaging events in a complex time history, one can conclude that Rainflow

counting can be used reliably. The regression procedure we have described can be useful in

situations where narrowband fatigue data is not available such as when fatigue constants
are to be determined from in-service data.
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Table VII.1 Fatigue Data for Random Loading [5]

SPECTRUM APPLIED STRESS

S,., ksi

FATIGUE LIVES

_sec.

ZERO CROSSING RATE/

PEAK RATE

A 3.56 93360 0.916

A 4.74 61860 0.916

A 4.74 32340 0.916

A 6.42 11400 0.916

A 6.42 5490 0.916

A 6.42 9660

A

A

A

9.17

9.17

9.17

13.50

13.50

13.50

3.95

6.40
i

6.40

8.91

A

A

A

B

B

B

1440

1200

1410

259.8

0.916

B

0.916

0.916

0.916

0.916

225.0 0.916

198.0 0.916

128880 0.801

3540 0.801

2700 0.801

1302 0.801



Table VII.1 - Continued [5]

SPECTRUM

C

APPLIED

S,,,, ksi

3.57

STRESS FATIGUE LIVES ZERO CROSSING RATE/

D 4.58 8040 0.889

D 6.00 6300 0.889

D 6.36 7020 0.889

D 6.36

C 11.20 0.695

C 11.20 183.6 0.695

D 4.58 19080 0.889

D 4.58 9120

C 4.47 51660

C 6.12 8850

C 7.90 1332

C 7.90 1320

C 7.90 1530

C 11.20 334.8

C 11.20 319.8

65580

295.8

966O

PEAK RATE

0.695

0.695

0.695

0.695

0.695

0.695

0.695

0.695

0.889

0.889

tt_ see.



Table VII.2 Fatigue Data for Random Loading [6]

SPECTRUM

A

A

A

APPLIED STRESS

S_,, psi

FATIGUE LIVES

_sec.

13924 37394

14940 20170

16680 10522

ZERO CROSSING RATE/
PEAK RATE

0.992

0.992

0.991

A 17840 12924 0.990

B 14940 25680 0.886

B 14940 26330 0.898

C 14940 24320 0.904

D 14940 53870 0.586

D 16100 29390

18420

15394

16680

D

E

13770

72480

39384

2359O

E

E 17985

0.586

0.586

0.593

0.593

0.593



Section VIII Powell's Method

Powell's method has the characteristic that when it is applied to a quadratic form,

it choose conjugate directions (defined in the following paragraph) in which to move.

Hence, the rate of convergence is fast when the method is used to minimize a general

function. In addition, PoweU has added a modification to the basic procedure to ensure a

reasonable rate of convergence when the initial approximation is quite poor.

Conjugate Directions

Consider the problem of finding the minimum value of the quadratic function

f(X) = IXTAX + BTx + C, (VIII.l)

where, A is positive definite and symmetric. In two dimensions, the level curves f(X) = K,

for different values of K, are concentric ellipses as shown in figure (VIII.l). Suppose that

we search for a minimum from the point X ° in the direction S 1 , that this minimum occurs

at X 1 and that C is the optimal point. We say that the direction X 1 - C is conjugate

to the direction S 1 since, for any ellipse f(X) = K, the diameter through X 1 is conjugate

(in the usual geometrical sense) to the diameter parallel to S 1. The idea of conjugate

directions is easily extended to n dimensions.

Let a set of non-zero search direction vectors S 1, 82, ..., S" be conjugate to a given

positive definite matrix A, if the following condition is satisfied,

S iT. A- S j -" 0, for all i _ j, (VIII.2)

where the matrix A is as defined in equation (VIII.I).

We can reach the minimum in at most n exact one-dimensional searches, if the i-th es-

timate, X i, is generated by the initial guess,X °, and the conjugate directions S 1 , S 2, ..., S i.

The estimates of X at each iteration may be written in the form,

X 2 = X 1 + a2S 2 = X 0 + hiS 1 + a2S 2, (VIII.3)

X 1 = X ° + alS 1,

i

X _ = X i-1 +aiS i = X ° + _°_J Sj,

j=l

where c_i are optimum step size it should go from X i-1 to X i along direction S i.

A search technique which finds the minimum of f(X) defined by equation (VIII.l)

in a finite number of one-dimensional searches will have considerable merit for a general

optimization problem, since it should converge rapidly once the optimum is approached.

The basis for these methods can be seen in the geometric construction shown in figure
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(VIII.I). Here any point, X °, is taken as the initial base point, and a search is made in an

arbitrary direction (shown here as S 1) until a minimum, X 1, is found. A second point, X 2,

not on the line through X ° and X 1, is now taken and a search carried out for a minimum,

X 3, on the line parallel to that through X ° and X 1 ($1). If the contours are ellipsoidal,

as defined by equation (VIII.I), a line connecting points X 1 and X s constructing a new

direction, S 2 will pass exactly through the true minimum. A one-dimensional search

along this connecting line will then reveal the desired optimum. We can therefore find

the optimum without further iteration, provided the objective function has the quadratic

form given by equation (VIII.I). IS the objective function is not quadratic, then of course

convergence is not assured in a finite number of iterations, or even after a very large number

of tries. Since most problems of interest are not expressed in terms of quadratic objective

functions, we might inquire as to the value of quadratic convergence. Most functions,

however, approach quadratic behavior in the neighborhood of their optimum, and since

quadratic functions can have very elongated elliptical contours, quadratically convergent

methods are capable of coping with such shapes. In essence, it seems very reasonable

to expect a quadratically convergent procedure to be effective in searching nonquadratic

object functions.

Powell's Basic Method

Initial directions in Powell's method are usually taken to be the coordinate directions,

$1= (1, 0, 0, ..., 0) T, $2=(0,1,0,...,0) T, ..., S" = (0, 0, 0, ...,1) T (VIII.4)

then repeat the following sequence of step until the function stops decreasing:

(1) Save the initial estimation of X as X °.

(2) For i = 1, ..., n, move X i-1 to the minimum along direction S i and call this point
X i .

(3) For i = 1, ..., n - 1, set S i _-- S i+1.

(4) Set S" ,-- X" - X °.

(5) Move X" to the minimum along direction S '_ and call this point X °.

But, if one uses Powell's method to solve

/(X) -" Xl 2 -- XlX 2 + 3X2 2 (vni.5)

starting at the point X ° = [1, 2] with S 1 - [1, 0], and S 2 = [0, 1], then it will be found that

when searching from X ° in the direction 81 for a minimum, it turns to be the point X °

itself. Thus X 1 = X ° and the method breaks down: the directions of search in subsequent

iterations are restricted to a subspace which does not contain the direction 81 . The given

problem can not therefore be solved by this method.

Powell's Method

Powell modified his basic method to overcome the type of difficulty encountered above

by allowing a direction other than S 1 to be discarded after each iteration. In this way, the

n directions of search can be chosen so as to be always linearly independent; in some cases,

103



the same n directions are used for two successive iterations. For each iteration starting

with initial point X ° and n directions S j, j = 1,2, ...,n, it proceeds as follows:

(1) For i -- 1,2,...,n, search from X/-1 in the direction S i for a minimum at X/.

A = max [f(X i-1) -/(Xi)] = f(X q-a) - f(X q) (VIII.6)
l_<i<n

(2) Find

i.e. q is the value of i which has a maximum value of A.

(3) Define

fl = f(X °) f2 -- f(X")

f3 =/(2x" - x °)
and evaluate

(viii.7)

(viii.s)

(4) If either

f3 _> (VIII.9)

and/or

2(fl - 2f2 + f_)(fl - f2 - A)2 > &(fl - f3) 2, (VIII.IO)

use the old directions S i, i = 1,2, ...,n for the next iteration and use X n as the initial

point of the next iteration, X °. Otherwise, use rule (5).

(5) Set _ = X'* - X°; move X '_ to the minimum along the direction 5 and call this

point X°; and take the following sequence as the directions for the next iteration

S _, ..., S q-', S q+' , ..., S", & (VIII. 11)

In (4), the first inequality considers the value of a tentative value of the objective

function (error function) f3 found by exploring ahead along the new search direction.

Here Powell test6 the objective function at the point X = 2X '_ - X °, which is a point

along the direction S n, located the same distance from X n as the original base point X °.

If this tentative point in the new direction does not produce a better value of the objective

function than the original base point, the new direction is rejected without further tests

as being a poor prospect.

The second inequality is used to determine if the function may not be rising sharply

( when seeking a minimum ) in the move from the point X n to the tentative point X

after dropping sharply from X ° to X n. In other words, the test is used to determine if

the direction S n is pointing across a deep valley, and if it is, we reject it as a reasonable

direction of search, retaining the previous search directions for use in the new stage.

Reference

[1]L. Cooper and D. Steinberg 1970, Introduction to Methods of Optimization, W.

B. Saunders Co.
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IX.1 Governing Equation for a Nonlinear Beam - Rainflow Counting

The results presented in the following are part of an investigation of the effects of

nonlinear vibration on the fatigue of structures. Nonlinear effects are important in fatigue

studies because it is usually large deflection response that causes damage and nonlinearities

are more prevalent when the deflections are large. While most structural systems are not

subjected to sufficient excitations to elicit nonlinear response in service, it is not Uncommon

to perform experimental studies of the fatigue life with artificially high vibration levels.

By testing at high vibration levels the rate of damage accumulation may be accelerated so

that the test can simulate a long service life (say 10 to 20 years) during a normal 8 hour

working day. In order to properly use the results of the accelerated test, however, it is

important to know what influence nonlinearities may have on the results. The goals of the

present investigation are to examine the impact of common nonlinear effects on fatigue life

and to develop practical tools for including nonlinearities in fatigue predictions.

In the present section the method of Rainflow counting is applied to estimate the

fatigue life of a nonlinear beam. The model of the response of the beam comprises an

extension of the linear beam analysis presented in section II.2 to account for nonlinearities.

The equation of motion for the deflection, W, of a base excited, elastic beam including the

effect of nonlinear stretching strain at large deflection is

Ebh3 I¥

I

Zb----_hw_l fo W:(¢,t)d¢ + ,#V = -pAf_o.
(LX.I.1)

where p is the density, A is the constant cross sectional area, E is Young's modulus, b

is the width, h is the thickness, l is the length, and ? is a viscous damping coefficient.

The subscript x denotes partial differentiation with respect to x and dots denote partial

differentiation with respect to time, t. W is measured relative to the displacement of the

beam ends which are assumed to have equal prescribed acceleration l_ro, and have zero

rotation, l_o will be assumed to be stationary Gaussian white noise. In the derivation of

equation (IX.I.1) it is assumed that there is no axial displacement at the beam ends. The

derivation is presented in section IX.4.

The relation between the strain and displacement of the beam may be shown to be

1/'_ a_w(_,t)
_ = 5_Jo w_(_,t)d_- z ax2 , (IX.l.2)

where z is the vertical distance from the mid-llne of the beam. Since the boundaries

prevent rotation at the beam ends, the maximum strain will occur at x = 0, and x = l

and at the extreme fibers at z = +hi2. The maximum strain is then

1 f_ h O2W(z,t)
"= _ Jo W_(_,t)d_+ 2 axz ' (IX.l.3)

where x = 0 or x = I.
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An approximate solution of equation (IX.I.1) may be developedby expanding the
displacement responsein a finite set of the eigenfunctions for a linear clamped-clamped
beam, el(X),

N

w(x,t) = _ _i(t)¢_(x), (Ix.l.4)
i=1

where N is a finite integer and ai(t) are unknown functions of time. For the linear beam,

the eigerdunctions are given by

¢,(_) = cos(p_x/t)- cosh(p_x/t)+

Di(sin(pix/ l) - sinh(pix/I))
(LX.I.5)

where pi and Di are given in Table II.2.1 for the first six eigenfunctions.

Substitution of equation (IX.1.4) into (IX.I.1) leads to a coupled system of nonlinear

ordinary differential equations for the ai(t),

N

&'i + _di + w_ai + Q(a_q_)_., Iiiaj = FifVo(t),
j=l

i = 1,2,...N, (ix.L6)

where c_ is a vector containing the ai(t), and

E N N

i=1 j=l

(IX.1.7)

and

Eh'

Iij = 7 Jo Ox Ox
dz,

lfo'= -7 ¢_(_)d_.

Note that due to the symmetry of the beam Fi is zero if i is even.

steady-state response corresponding to even numbered modes is zero,

(IX.I.8)

(Ix._.9)

(Ix.L10)

(IX.I.ll)

As a result, the

lira ai(t) = 0 if i is even. (IX.I.12)

Once the ai(t) are determined, the displacement, W(x,t), is obtained from equa-

tion (IX.1.4) and the maximum strain may be calculated using equation (IX.1.3).
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IX.2 Quasi-Simulation for Multi-Mode Nonlinear Systems

In this section, we shall present the method of equivalent linearization for solving

equation (IX.1.6). A simulation procedure of the resulting equivalent linear system is then

developed to generate the maximum strain time history for the purpose of fatigue analysis.

The method of equivalent linearization consists of approximating equation (IX.1.6) by

an equivalent linear system,

N

'_',+ ¢'_'+ Z K,j,_,+ _,(_)= F,Wo(O,
j=l

i= 1,2,...N, (IX.2.1)

where the constants Kij are chosen to minimize the error, ei(__), in some sense. From

equations (IX.1.6) and (IX.2.1), the error term e_(_) can be written in a vector form

/ N )e = {ei(_)} = E KiJai -w_ai- Q(a_.) EIiJ°_i •
j=l j=l

(IX.2.2)

Minimization of the steady-state mean square value of the e with respect to K_j leads to

0E[eTe] ----0. (IX.2.3)
OK_

Expanding equation (IX.2.3), and using equation (IX.1.7) give

N

E Ki_oE[ama/] = w_E[aia/]+
m=l

E N N N

m=l k=l /=1

(IX.2.4)

The solution for the ai's from equation (IX.2.1) with the error term neglected is known to

be jointly Gaussian. The fourth order moments in equation (IX.2.4) can thus be expressed

in terms of lower order moments,

E[ajak]E[amat]+ E[a/a_]E[a,oak].
(IX.2.5)

In deriving equation (IX.2.5), we have used the fact that all the odd order steady-state

moments of the ai's are zero. Substituting equation (IX.2.5) in equation (IX.2.4) gives

N E

E Ki_E[amaj] = w_E[aiai] + -- x
rn= l 2p

N N N

E E E I_,,ht{E[_/am]E[akat] + 2E[aiak]E[a_a,]).
m=l k=l 1=1

(IX.2.6)
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Equation (IX.2.6) can beusedto determine the componentsof Kij. However, one has

to solve simultaneously for E[aiaj] and Kij using an iterative procedure as described in

the following. To simplify the discussion, we introduce the following matrix notations:

R={E[_ia/]}, K={Kij},

n2 = _22

I= {I_j},

(IX.2.7)

Equation (IX.2.6) may then be written in a compact form

E

K. R= fZ2-R+ _p {(I:R)I. R+2(I-R).(I-R)}, (IX.2.8)

where

N N N

(K" R)i / = _ Ki,_R,,,j, (I: R)= E E IijRij.
m=l i=l j=l

Solving equation (IX.2.8) for K, we have

E

K = 122 + _ {(I: R)I + 2(1. R). I}. (IX.2.9)

Notice that in general, K is not diagonal. Neglecting the error term, ei(a_), in equation

(IX.2.1), then leads to a coupled system of linear ordinary differential equations. With

ei(__) neglected, equation (IX.2.1) may be solved using modal analysis.

Consider the equation

+ K__ 0: (IX.2.10)

Let 7_ (i = 1, 2,..., N) be the eigenvalues of the matrix K in equation (IX.2.10) and let
• be the normalized matrix of eigenvectors such that

cI,T- _, = 2", ¢,T. K. • = _ 722 "'. . (IX.2.11)

where 2" is the unit matrix. Also let

__= ¢__, f= OTF. (IX.2.12)

If the error term, ei(_a), is neglected, equations (IX.2.1) and (IX.2.12) lead to the equations

for modal coordinates fli

_i + ¢#i + 7_3, = f,#o, i = 1,2,...N. (IX.2.13)
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This uncoupled system of equations will be used in the following to simulate the time
domain responseof the nonlinear beam. Define a matrix of secondorder moments of the
modal coordinates,

R = {E[/3//3j]}, (IX.2.14)

where the steady-state moment E[/3i/3j] can be obtained as

(f_fjGeo

E[_,_A= (_ _ _)2 + 2_2(_ + _)' (Ix.2.15)

and where G9¢o is the single sided power spectral density of I_'o with units of acceleration

squared per Hertz. The matrices R and Ta,.are related by

(Ix.2.16)

Using equations (IX.2.9) through (IX.2.16), the iterative procedure for determining

R and K may be stated as follows:

Step 1. (Zero order approximation) Assume that

E[aiaj] = 0, Kij = 0 for i ¢ j.

Then, from equation (IX.2.6),

E N

Ki, = w_ + _p E(IiiIi.i + 2I_j)Eta_]
j=l

(L_.2.17)

By neglecting the error term, ci(_) in equation (IX.2.1) and neglecting the off-diagonal

elements of Kij , we obtain

4(E[a2. ] . (IX.2.18)

Equations (IX.2.17) and (IX.2.18) can be readily solved iteratively by starting with an

initial value of Kii = w_. Equation (18) may then be used to determine E[a_] and the

result substituted into equation (IX.2.17). Evaluation of (IX.2.17) then produces an up

dated value of Kii. This process may be repeated until Kii and E[a_] converge.

Step 2.

gives

Compute Kii for i _ j. Using the results from Step 1 in equation (IX.2.6)

N

E _(_,Jkk + 2X,kZ_k)E[_],_# j. (_X.Zl_)
Kij = _ k=l

Step 3. Determine the eigenvalues and eigenvectors of the matrix K in equation

(IX.2.10).

Step 4. Evaluate 7"/and then R using equations (IX.2.14) through (IX.2.16). Let R,,

and K, denote the R and K matrices obtained in the n th iteration. K, is updated by

using equation (IX.2.9) where R is replaced with Ra.
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Step 5. Check convergence. If

IlRn - R.-,II < 6R, or IlK. - Kn-,ll < 6K, (IX.2.20)

then stop the iteration, otherwise, repeat the iteration from Step 3. In equation (IX.2.20)

6R and _g ate two given small numbers, and ]1" I] denotes the norm of a matrix. The

infinite norm

IIRII= - max In,il (IX.2.21)
I,J

is used in this study.

It should be pointed out that in additional to matrices R and K, the eigenmatrix

and eigenvalues 7_ are also obtained at the end of the above iteration. These are the

results we need for the subsequent fatigue analysis. Most applications of the method of

equivalent linearization end at yielding the matrices R and K.

We have thus far completed the description of the method of equivalent linearization

for determining the response of the nonlinear beam under consideration. The general idea

of this method applies equally well to other nonlinear structures. To analyze the fatigue

damage of the beam, we need samples of the time history of ai(t) to generate time histories

of the strain or stress. It turns out that it is more efficient to do so if the strain is expressed

in terms of modal coordinates _i(t). Using equations (IX.1.3) and (IX.1.4), the maximum

strain of the beam at x - 0 or l can be written as

e = aT(_ + lo7I a, (IX.2.22)

where

h 02¢i(0) }a= {ai}= 5 _ ' (IX.2.23)

and I is defined in equation (IX.2.7). By substituting the first of equations (VI.12) into

equation (IX.2.22) the maximum strain may be expressed in terms of the ,Bi(t),

(IX.2.24)

where

_t = ate, i -- _TI _. (IX.2.25)

The modal responses of the equivalent linear system, _i(t), can be readily simulated

from equation (IX.2.13). Equation (IX.2.24) then gives the strain time history. Once the

strain time histories are generated, a fatigue damage model may be applied to estimate

the fatigue life.

An efficient way of generating the time history of /_i(t) is to integrate equation

(IX.2.13) numerically using the central difference scheme:

_(_.+_) = c_zi(t,,) + c_,(_,,_,) + c_/_Wo(t,,). (IX.2.26)
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where t, is the value of t at the n th time step, t, = n. At, where At is the time increment.

The constants C1, C2, and C3 are given by

CAt CAt 2 - 1 (IX.2.27)C1=2-7 /xt 2 c2= -I C3 1

CAt + 1 CzXt+ 1 gCzXt+ 1

Note that because the calculations are performed in terms of uncoupled modal coordinates,

the modal responses may be obtained using parallel processors with vectorization.

The local truncation error of the central difference scheme is of the order O(At2). The

spectral stability condition of the scheme for each mode is given by [1]

2
0 _< At _< --, i = 1, 2,..., N. (IX.2.28)

7i

Hence, the stability condition for the entire system is given by

2
0 _< At < --, (IX.2.29)

7N

where 7_v is the largest eigenvalue in equation (iX.2.11). The time step At in our simulation

is chosen according to equation (IX.2.29). The time series of the white noise excitation

l_o(t,) is simulated by using Rice's approach and the Fast Fourier Transform [2].

We shall refer to the method of fatigue analysis described in this section as the quasi-

simulation approach. In summary, the method of equivalent linearization is used to obtain

the eigenvalues and eigenmatrix of the uncoupled equivalent linear system, and then the

time histories of the modal coordinates are simulated numerically to generate the strain

time histories for the fatigue analysis. It should be noted that once the equivalent lin-

ear system is determined, the computational effort of simulating the time series of the

response is identical to that required for a linear system and is independent of the type of

nonlinearity. Since a large number of very long time series are required to obtain accurate

fatigue estimates, the 'over-head' required in constructing the equivalent linear system is

comparatively small.

IX.4 Numerical results

The quasi-simulation approach developed in the previous section has been applied to

estimate the fatigue life of a nonlinear beam and the results compared to those obtained

using a conventional numerical simulation. The comparisons were performed to identify

the errors in the approximate method and to quantify the savings in computation time.

The conventional simulations were obtained using a fourth order Runge-Kutta algorithm.

The same time step, At, was used in all computations. The parameters of the beam used

in the numerical study are:

E = lOt#/in 2, p = .1#/in 3, h = .032in,

l = 15in, 7/= 3.016, b = 2, A = .064,
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where the variables are defined in the discussionfollowing equation (IX.I.1). The number
of resonant modeswas taken to be three.

Estimated fatigue lives are shownin figures IX.4.1 and IX.4.2 for the nonlinear beam
modeledin the previous sections. In thesefigures the dots indicate results obtained using
a full numerical simulation and the lines are the result of the approximate method. The
estimated fatigue lives are found to be in excellent agreementfor a range of excitation
levelsand for a rangeof valuesof the fatigue exponent, b, in equation (III.l.1).

In the results shown in figure IX.4.1, damage was assumed to occur at each stress

maximum in the time domain. In figure IX.4.2 damage was accumulated only for the

greatest stress maximum between zero crossings. Of course, as discussed above, one can

accommodate any desired damage counting scheme in a simulation procedure.

Equation (III.l.1) was implemented in the simulations in the form

Dm Dr. + (IX.4.1)
c

where Dm is initially set to zero and S is the level of the stress maximum. The absolute

value of the stress is taken to allow for positive contributions to damage due to negative

maxima, b is the fatigue exponent which for most materials varies between 2 and 6. c is a

material constant taken to be 6.56 x 103°. The value of c has no effect on the comparison

between the methods shown in figures IX.4.1 and IX.4.2.

Once the simulated damage is accumulated according to equation (IX.4.1) for a suffi-

ciently long time, r, the average damage rate is simply

A = D,,,/r,

and the simulated mean fatigue life is

(IX.4.2)

T = 1/A. (IX.4.3)

Figures IX.4.1 does not reveal the amount of nonlinearity in the system at the excita-

tion levels used here. To indicate the influence of nonlinearity, the power spectral density
of the stress time history was computed for three excitation levels. The results are shown

in figures IX.4.3 through IX.4.5. In figure IX.4.3 it is clear that three resonant modes

contribute to the response. In this figure the excitation level was not intense enough to

elicit nonlinear behavior. As the excitation level is increased, the full simulation shows

that the three dominant peaks are shifted to higher frequencies and become broadened.

Additional peaks in the stress spectrum also become apparent at the higher excitation

levels. Since the response is drastically different at the higher levels than at low excitation

levels, nonlinear effects clearly play an important role. A further indication of the degree

of nonlinearity in the response can be seen in figure IX.4.6 which shows the mean square
displacement at the center of the beam with and without nonlinearities included. The

figure shows that above roughly -35 dB (g2/Hz) the nonlinearities are substantial.

The increase in resonant frequencies and the broadening of the resonant peaks are

common behaviors of random systems with stiffness nonlinearities. The broadening of the
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resonant peaks has been shown to result from the fact that the resonant frequencies become

random in a system where the stiffness depends on the random response amplitude [3]. It

has also been shown (and can be seen in figures IX.4.3 through IX.4.5) that while equivalent

linearization accounts for the increase in the resonant frequencies due to nonlinear stiffness,

it does not depict the broadening behavior [4]. Although equivalent linearization does not

accurately represent the response spectrum, it has been applied very successful!y using a

probabilistic approach to estimate fatigue life for a single degree of freedom system [5].

The results obtained in the present study show that equivalent linearization may also

be used in a time domain approach to estimate fatigue lives for multi-degree of freedom

nonlinear systems. Theoretical aspects, such as error analysis and convergence, of the

method of equivalent linearization for the fatigue analysis of nonlinear structures await

further studies.

Along with the shift and broadening of the resonant response peaks, figures IX.4.3

through IX.4.5 also show that the nonlinearities produce additional peaks in the stress

spectrum. These added peaks arise from the nonlinear stress/displacement relationship in

equation (IX.1.2) and from the nonlinear coupling in equation (IX.1.6).

As mentioned above, the numerical comparisons were performed to evaluate the accu-

racy of the approximate simulation and to determine the improvement in computational

efficiency relative to conventional simulation methods. In the present effort, our purpose

is not to conduct a comprehensive comparison of numerical simulation methods. The

present results primarily serve to indicate the validity and potential of the approach. For

the cases studied here where the beam was assumed to have three resonant modes, the

quasi-simulations required roughly (1/8)th the computer time used to perform the full
simulations.

All of the calculations were performed on an IBM 3090 computer using a single proces-

sor without vectorization. Since the present approach is well suited to parallel computation

on multiple processor computers, even greater savings are achievable.
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X. Nonlinear Plates

In the previous section an application of equivalent linearization is developed to esti-

mate the fatigue life of a simple beam with multiple resonant modes. The results indicate

that the method is applicable to fatigue prediction in nonlinear structures. Because we

are usually concerned with the problem of estimating the fatigue life of structures that are

considerably more complicated than beams, the procedure has been applied to anonlinear

plate. The next logical application of the method should be on stiffened plates or shells

such as fuselage structures. This extension of the method will be left to future studies.

In the present section, a model of a nonlinear plate is developed based on Von-Karm£n

plate theory and a governing equation for transverse motion only is derived by neglecting

the in-plane inertia. As in the analysis of the nonlinear beam of the previous section,

an equivalent linearization approach is used to approximate the nonlinear system with a

equivalent linear system by selecting the damping properties and natural frequencies to

minimize the mean square error between the approximate and original system. Further, the

construction of the time domain response due to stationary Gaussian random excitation is

relatively straight-forward and the geometrical nonlinearity which results in a nonlinear re-

lationship between strain and displacement is considered. Because the plate we considered

has multiple resonant modes, the response will be broad-band in nature. The Rain-Flow

Cycle Counting scheme which is applicable to a broad-band process is used to estimated

the fatigue life. The present approach is based on an analysis of the stress and strain in

the time domain because the Rain-Flow Cycle Counting scheme is extremely difficult to

incorporate in a probabilistic formulation.

It has been shown previously that although the equivalent linearization method is not

appropriate for estimating the power spectral density and some other statistics, it yields

reasonably accurate estimates of the mean square response. We have shown that the

estimated fatigue lives of nonlinear beams are in excellent agreement with results obtained

by more accurate techniques. The purpose of the present study is to extend these results

to nonlinear plates.

Comparisons are presented of the estimated fatigue lives of a plate with multiple

resonant modes and geometrical nonlinearity as obtained by present method and by a

full numerical simulation. It is found that the fatigue lives agree very closely even when

nonlinearities dominate the response. Since the major computational effort of the present

approach is concentrated on constructing the time domain response of the equivalent linear

system, the efficiency and complexity of the analysis are not affected by the nonlinearity

of the structure. This feature makes the present approach a very practical method for

fatigue study of highly complex structures. Further, the equivalent linearization approach

is efficient enough to allow us to compute fatigue lives at a large number of points on a

plate which is almost impossible to get by using full numerical simulation.

A comparison is presented of predicted fatigue lives with and without nonlinearities

included in the model. It is found that although the predicted fatigue lives are in close

agreement when excitation is low, the fatigue lives differ significantly when the excitation

is high. This is because the geometrical nonlinearities which are caused by the stretching

of the plate reduce the mean square stress response and increase the predicted fatigue
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lives. It is implied that wecan not calculate the low excitation fatigue lives from the high
excitation fatigue lives by using a simple linear extrapolation.

X.1. Nonlinear Plate

In this section, the governing equation for a nonlinear plate which is subject to random

excitation is obtained, an equivalent linear approach is derived in detail and the maximum

stress of the plate is computed in terms of the modal coordinates. It will be assumed that

the plate is excited by the transverse motion of its boundaries.

X.l.1 Basic Assumptions for a Nonlinear Plate

The assumptions of the present investigation are based on the Von-Karm£n plate

theory. For a thin plate subject to large elastic deflection with small rotation, the following
assumptions are made:

1. The plate is thin, the thickness h is much smaller than the wavelength of any vibration
modes considered in the model.

2. The magnitude of the deflection W is of the same order as the thickness h of the plate.

3. The slope is everywhere small.

4. The in-plane displacements U and V are infinitesimal. In the strain-displacement re-

lations, only those nonlinear terms involving ow owOx, oy are included, all other nonlinear
terms are neglected.

5. All strain components are small so that Hook's law holds.

6. Kirchhoffe's hypotheses hold: Tractions on surfaces parallel to the middle surface are

negligible, and strains vary linearly within the plate thickness.

7. The in-plane inertia is negligible compared with the transverse inertia.

X.l.2 Governing Equation for a Nonlinear Plate

Let U(x,y,t), V(x,y,t),and W(x,y,t)(see Figure X.1) be the displacements of a point

(x, y) at the middle plane of the plate relative to the motion at the boundaries at x =

0, a, y - 0, b. The displacements of an arbitrary point within the plate are given by,

ow(x,u,t)
Oz

ow(z,u,t)
v (x,u,z,t) = v(x,u,t)- z

Oy

= w(x,u,t).

The Green's strain components are given by,

10Ui OUj _ OUk OUk
(X.1.2)
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wherewe have dropped the explicit dependenceon x, y and t to simplify the notation.

Because we regard the thin plate as a plane stress problem, we can neglect the z

components of the strain and stress. From equation (X.l.2) and Hook's law, we can get

the relationships for strain e and stress e in terms of the displacements at the middle plane

of the plate,

t_xy 1 [OU OF 2z_2W "JR OW_W]

£
a,, = 1 - v----i(_`" + v_vv)

£

aY_ = 1 - v2 (_y_ + w,,)

E
O'x v = _zy,

l+v

where E, v are Young's modulus and Poisson ratio of the material, respectively.

The kinetic energy T and strain energy F are given by,

h

m--_ L\ ot )
_40 0

h
T b a

1

_&O 0
2

dxdydz (X.1.5)

+ avyeyy + 2a_vezy) dxdvdz,

where, a, b, h are the length, width and thickness of the plate, p is the mass density and

W0 is the prescribed motion of the boundaries. Substituting equations (X.I.1), (X.1.3)

and (X.1.4) into (X.1.5) and (X.1.6), integrating with respect to z, gives,

b el

ph

+ -- + + ot ] dzdy
0 0

b a

loh3 / f (02 W_2 (02 W_2]
+ ---_-jj [ + dzdy;\ _-_7) \ ovot ) J

0 0

(X.l.7)
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b

v= W iT:) + \-__-:) + 2.
o 0

b a

=jj[(o.)' :ov :=:o,,
o 0

1-.((OU_ 2

+--_-\\ay) +

02W 02W

Ox 2 c_y2 \aza_) j

( )aV 2 20 U
-_z + ay _ dxdy

b

+ gjj[k--_] + _-y + \_-x] \ a_ ] j
0 0

b a

=::to.(=)'
o o

( )+(l-v) au av aw
+ _x Ox dxdy,

(X.1.8)

where,

Eh 3 Eh

D "-- 12(1 - v 2) B = 1 - v 2" (X.l.9)

The second term of (X.1.7) represents the rotational inertia and it will be neglected

because it only influences the very high frequency responses. This will cause the mass

matrix to be diagonal. The first term of (X.1.8) will generate the linear term of the

stiffness matrix of the transverse motion, the second term will generate the linear term

of the stiffness matrix of the in-plane motion, the third term will generate the nonlinear

term of the stiffness matrix of the transverse motion and the fourth term accounts for the

coupling between transverse motion and in-plane motion.

The virtual work done by the non-conservative forces may be written as,

b

0 0

(X.1.10)

where c(x, y) is the viscous damping coefficient.

Now, we assume the displacement responses U, V,_W can be expanded in a finite set
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orthogonal functions,
M

u(x, y,t)=  ,(x)Zj(y)trx(t)
i=l

M

v(x, y,t) =
i=l

N

I-----1

where ai(x),_j(y),'}'i(x),,Tt(y) are the functions used to describe the in-plane motion,

¢i(x), e/(y) are the functions for the transverse motion, M, N are the number of terms

used for the in-plane and transverse motion, respectively, and ~ denotes the index relative

to the in-plane motion. Ui(t), Vi(t), and Wi(t) are unknown functions of time. i,j are

selected so that any desired number of half waves is included in each direction. The

relationships between the indices are

(x.I.11)

I = (i-1)×n t + j

for i = 1,2,...hi, j = 1,2,...hi,

and, (X.l.12)

]= (i-1) xfi t + j

for i - 1,2,--.fii, j = 1,2,...fi t

An example is given

with fii = fit = 3,

where ni,n t are the number of modes for transverse motion in the z and y direction,

respectively, and fii, fit are the number of modes for in-plane motion in x and y direction,
respectively, and

N = ni x nj

M = fii x fit- (X.1.13)

in table X.1.1 to show the relationship between/z and i,j for U(z, y, t)

s? i j

1 1 1

2 1 2

3 1 3

4 2 1

5 2 2

6 2 3

7 3 1

8 3 2

9 3 3

Table X.l.1 An Example of Index Relationship

In the present study, the boundary conditions for in-plane motion are taken to be

fixed and for transverse motion they are assumed to be clamped-clamped. A reasonable
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choicefor the shape functions used in equations (X.I.ll) is the set of eigenfunctions for a

fully fixed beam,

2ircx
oq(x) = sin_

a

flj(y)=sin_ -

7i(x) = sin--
a

2j_y

_(u)=sin b

¢i(x)

¢,(u)

where Pi and Oi

(x.1.14)

are given in the table X.1.2 for the first six eigenfunctions.

pi Di

4.730040745 -0.982502215

7.853204624 -1.000777312

10.99560784 -0.999966450

14.13716549 -1.000001450

17.27875996 -1.000000000

20.42035225 -1_000000000

Table X.1.2 Eigenfunction Coefficients for a Clamped-Clamped Beam

Introduce following notations,

b a

0 0

b a

Q(I)= phf f (¢i_j)dxdy

mv(I,J)

my(I, J)

0 0

b a

0 0

b a

0 0

(x.1.15)

b tl

f f .1. ,.I.112. .l. ll I I I I
kw(I, J) -- D (¢_'¢j¢_¢1 + u'wj U'k_t + 2¢iCjCk¢l) dxdy

0 0

b a

0 0
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//kv(i, J) = B ('r_,7?rvT_+ --g-'ri,7;r,,,7,) dxdy
o 0

b a

o 0

b a

0 0

f I !+ 2¢,¢iCkOt¢,,¢,¢_O',)gxdy
b a

_-- ( _i_bj_k elOtmSn _- l/_i_bj_k_blotm_ n -_- (1 t t t- ,')¢&iCkCt_,,,&) &du
o o

b a

-- CkCtTmrln) dxdy,

o o

and
b ,,,1

0 0

(x._.17)

where t denotes the derivative with respect to the spatial variable. Then the energy

expression can be written in a compact way. Substituting equations (X.I.ll) through

(X.l.17) into equations (X.l.7) and (X.1.8) gives,

N N
1

T = _ ( Z Z M(I, J)ITVIITVj
I=1 J=l

M M

+_ _(mu(i, J)0i0j +.w(L J)_ie:) (x.l.ls)
i=1 Y=I

N

+2 Z Q(I)ITV)I;Vo + ablTV_)
I=l

N N
1

v = _ (_ _ kw(z,s)w,wj
I=l J=l

M M

+_ _(kv(i, JlU,Vj+ kv(i,JlV,Vj+ 2k_,.(i,])u_vj)
i=a Y=a

1NNNN

I----1 J=l K=I L=I
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M N N

+2_ Z Z(k.'_(f:,I,J)w.w_u_ + k_v(f:,z,J)w.w_v_)),
/_=1 I=1 J=l

where we have dropped the explicit time dependence of Uij (t), V/j (t), and Wij (t) to simplify
the notation.

The Ritz Method will be used in this model to find the mass and stiffness matrices

and the response of the plate by using Hamilton's Principle,

t2

_fsr- v + w] dt = 0,
tl

(x./.2o)

where 6 is the variational operator. Note that the base excitation, W0, is a known function,
so that,

tWo - _t" 0 = 0. (X.1.21)

Applying the variational operation to equation (X.l.18) and (X.l.19) gives,

N M

,_T =(_ M(I,J)Ws + Q(I)I;Vo)6WI + _-_(mv(i, j)_rfiUz + my(i, J)Pjg_l.22)
J=l ff=l

N N N N

_SV = ( E kw(I,J)Wj + E E E kww(I,J,K,L)WjWKWL
J=l J=l K=I L=I

N M

+ 9_ _(kw_(f,',Z, JlW+Ur_+ kwv(f:,z,J)w+vs:l)SW,,
J=l/_'=1

M M N N

+ (E ku(i,J)Uj + E kwv(i,J)Vj + E E kwv(i,J,g)WjWK)'_lt¢'il'23)
ff=l J----1 J=l K=I

M M N N

+ (F_,kv(i,J)vj + E kwv(LJ)vj + F_,E kwv(i,S,K)Wm_)_V_.
3=1 3=1 J=l K=I

Substituting equations (X.l.ll) and (X.l.17) into equation (X.l.10) gives,

N

6w = - F_,c(x, J)CC_,w,. (x.1.24)
J=l

Substituting equations (X.1.22) through (X.1.24) into (X.l.20), we can get the governing

equations for WI, U I and V I in the expansions in equations (X.I.ll),

N N N N N N

E M(x'J)#+ + E C(I,J)_Vj + E kw(I,J)Wj + E E E kWW(I,J,K,L)WjWKWL
d=l J=l d=l d=l K=I L=I

128



N M

+ 2Z Z (k_v(fi, I,J)u_w+ + kwv(k,x,J)vr,.w_)
J=l /_=1

= -Q(I)W0, (X.1.25)

for I = 1,2,--.,N
M M M N N

_m(i,:)03 + _ k_(i,J)uj + _ k_v(i,J)vj + _ _ kw_(i,S,K)WjW_ (_.Q,2_)
J=1 3=i 3=i J=1K=I

for _r = 1,2,...,M

M M M N N

_-_ffn(['J)f 3 + E kv('["])V3 + Z kuv('['J)V3 + E _ kwv(.[,J,K)WjWK _xa.27)
3=1 J=l J=l J=l K=I

for ] = 1,2,...,M

From previous analysis, we know [M(I, S)] is a diagonal matrix having diagonal ele-

ments M1, if we assume c(x, y) is a constant, [C(I, J)] will also be a diagonal matrix having

diagonal elements CI. In the present study, the general terms of the stiffness matrix have

been evaluated by using the symbolic computer program MACSYMA.

According.to the assumption of the Von-Kaxm£n plate, we can neglect the in-plane

inertia, U3andV 3 and solve for Ui, V I by using (X.l.26),(X.l.27),

N

E kwv( J, K, L)WNWL }
L=I

(x.! .28)
where{V(/)} is a vectorhaviegy|ementsU(I) for i= 1,2,..-,M, etc. _d [kv(L J)] is
a matrix having elements ku(I, J)

Equations (X.1.25) through (X.1.28) may be manipulated to obtain the governing

equation which depends on the transverse displacement W only,

N N N N

M,_Vx + C,I/V, + E kw(I,J)Wj + Z _ E kN(i,J,K,L)WjWKWL = -Q,17Vo,
J=l J=l K=I L=I

(X.I.29)

where kw(I, J) is the linear part of the stiffness matrix and kN(I, J, K, L) is the nonlinear

part.

X.l.3 Equivalent Linearization

In order to predict the fatigue life, a sufficiently long time history of the response under

random excitation is needed. Because of the nonlinear term in (X.1.29), it is not practical

to solve for the response in the time domain using full numerical simulation methods if

N is large. The numerical effort in evaluating equation (X.1.29) is roughly proportional

to N 4. In this section, we shall present the method of equivalent linearization for solving
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equation(X.l.29). This will lead to an approximate solution to equation (X.1.29) in which
the numerical effort is proportional to N 2 rather than N 4. This makes it practical to

include a large number of terms.

The method of equivalent linearization consists of approximating equation (X.1.29)

by an equivalent linear system,

N
1

_'rI + _IWI + MI E ke(Z,J)Wj -{- eI(W) - q(I)_]'o,
J=l

with
cr Q,

_i = -- ql = --- (X.I.31)
MI M_

where k,(I, J) is the equivalent linear stiffness matrix and ez(W) is the error term which

can be written in a vector form,

e = {e,(W)}
N N N N N

J=l J=l K=I L=l

(x.l.a2)
where the index I indicates the row of the vector.

The elements k_(I, J) are chosen to minimize the steady-state mean square value of

e,

&,(z,J) = 0, (X.l.a3)

where El.] denotes the expected value.

Expanding (X.1.33), and using (X.1.32) give,

N N

k_(I,M)E[WMWj] = _ kw(I,M)E[WMWj]
M=I M=I

N N N

+ E E E kN(I,M,K,L)E[WjWMWKWL].
M--1 K---1 L--1

(X.1.34)

for I = 1, 2,--.,N.

Now we assume W0 is Gaussian white noise, so the solution for the W1 is known

to be jointly Gaussian and all the odd ordersteady-state moments of the WI are zero.

The fourth order moments in equation (X.1.33) can be expressed in terms of lower order

moments,

E[WjWMWKWL] = E[WIWM]E[WKWL]+

E[WjWK]E[WMWL] + E[WjWL]E[WMWK].
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Substituting (X.1.35) into (X.1.34) gives,

N N

k_(I,J) - kw(I,J) + E E (kN(I'J'K'L)+ 2kN(I,K,L,J))Rw(K,L),
K=I L=I

(X.1.36)

where,

Rw(K,L) = E[WKWL] (X.1.37)

is the steady-state correlation matrix for WK, K = 1, 2,..., N.

Equation (X.1.36) can be used to determine the components of ke(I, J). However,

one has to solve for [k_] and [Rw] simultaneously. An iterative procedure is described in

the following. Let ¢(I, J) be a matrix whose columns are eigenvectors for

N
1

_¢I+ _ _] k_(I,])w, = 0.
J=l

(x.l.as)

• (I, J) is a normalized modal column matrix with the following properties,

[+l r [+l = I
(X.1.39)

[@]T[M]-I[k,][@] = ft 2,

where,

(1°i) /0 1 ... 122= w 2 ... 0 (X.1.40)
• • • : " - " ,

0 0 ... k 0 ... W_v

and wz is the Ith natural frequency. Define a transformation to modal coordinates, B j,

N

w, = Z ¢(I, J)B
J=l

N

J=l

(x.1.41)

Substituting (X.1.40) into (X.1.30) and neglecting the error term leads to an uncoupled

set of differential equations,

:9_r+ _ib, +,_B, =/i#o. (x._.42)

Assume l_0(t) is Gaussian white noise with single-side power spectral density G_¢. We

define the steady-state correlation matrix for the modal coordinates BI,

RB(I,J) = E[BzBj]. (x._.4a)
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From equations (X.1.41) and (X.1.42) it can be shownthat

E[BIBj] -- (w_-w_) 2 + 2(2(w_ +w_)'
(X.1.44)

The correlation matrices [Rw] and [RB] having elements Rw(I, J) and RB(I, J), respec-

tively, are related by

[nw] = r. (X.1.45)

Using equations (X.1.38) through (X.1.45), the iterative procedure to determine [k,]

and [Rw] may be stated as follows:

Step 1. (Zero order approximation) Assume that

RB(I,J) - O. (X.1.46)

Then

nw(Z,J) = o
k,(z,j) = kw(I, J). (x.1.47)

Step 2.

Step 3.

Step 4.

Determine the eigenvalue and eigen matrix of equation (X.1.38).

Evaluate RB and then Rw using equation (X.1.43) through (X.1.45). Then [k,] is

updated by using (X.1.36).

Check convergence. We will stop the iteration if the convergence conditions are satis-

fied, otherwise, repeat the iteration from Step 2.

It should be pointed out that in addition to the matrices [Rw], [RB] and [k,], the

eigen matrix ¢ and equivalent linear natural frequencies wI are also obtained at the end

of the above iteration. These are the results we need for the subsequent analysis.

X.l.4 Stress Calculation

In order to predict the fatigue life, we need the stress or strain expressions in terms of

the equivalent linear modal coordinates. The stress and strain should include both linear

bending and nonlinear stretching components. Substituting equation (X.1.3) and (X.I.ll)
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into equation (X.1.4) gives,

E M

_x = 1-,----z (_(_(x)zi(y)vi_ + _,'r,(x),,(_)yi)
I=1

N

-_ _--_(¢_'(_1¢,(v)+ _¢_(_)¢y(yl)W_
I=1

N N
1

I=1 J=l

M

I=l

N

I=1

N N
1

I=1 J--1

M

E (_(_,(_)_}(ylU_ + _(x)v,(_)Vi)
a_,=20+_) _

I=1

N

-_z _ _;(x)¢;(_)w_
I=l

N N

+ _ _ _(_)¢,(y)¢_(xl¢l(y)WlW_).
I=1 J=l

(X.1.4S)

From equation (X.1.48), we know that the stress of the plate is multiaxial and an

equivalent stress approach should be developed to calculate the fatigue life. But, because

the equivalent stress has different directions at different points, it is difficult to construct

and count the stress cycles when using a cycle counting scheme to predict fatigue life.

According to the basic plate theory, the maximum stress will occur at the boundary if the

boundary condition is clamped and either axx or ayu will dominate along the boundary.

So in this project we simply calculate the fatigue life by using a,, and ayu separately.

Along the boundary, the maximum axz will occur at the middle of the edge in y direction

while the maximum ayu will occur at the middle of the edge in x direction. If we assume

the width b is greater than the length a, then

b,,,,,o,_= ,,_(_ = o,_ = -_,_ = + h), (X.1.49)

where 4- means we can choose either the upper plane or bottom plane of the plate and it
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will come up with the same solution. Define

Su(i)= 1 -E" 2a_(O)#j(_)

sv(i) =

Eh bSw(I) - 2(1 -/,2) (¢_'(0)¢i(5) + #¢i(0)¢_())

Sww(LJ) = 2(1- 5) +

(X.l.50)

Substituting equation (X.1.48) and (X.1.50) into (X.1.49) gives,

M N N N

a,.,,. = E(Su(I)Ui + #Sv(I)VI) :l:E Sw(I)W, + E E Sww(I,J)WIWj.

.r=l I=1 I=1 J=l

(X.l.51)

Recalling the modal transformation equation (X.l.41), we can express equation (X.1.51)
aS,

M N N

a,n., = E(Su(I)UI + #Sv(I)Vi):l: E E Sw(I)@(I,J)Bj

.I:i 1:1 J=l

(X.1.52)
N N N N

+ E E E E Sww(I,J)¢(I,K)¢(J,L)BKBL,

I=I J=l K=I L=I

where Ui, VI are given by equation (X.1.27) and can also be expanded as an expression in

terms of the equivalent linear modal coordinates BI.

X.2. Quasi-Simulation and Fatigue Estimates for Multi-mode Nonlinear Plate

As in previous sections, we will assume that the relation between the stress amplitude,

S, and the number of the cycles to failure, N, is given by the well known equation,

N = c/S b, (X.2.1)

where c and b are experimentally obtained constants for a given materials. For most

material b varies between 2 to 6 and c is taken to be 6.56 x 10 a° here. For the purpose of

estimating high cycle random fatigue life, the Palmgren-Miner linear damage accumulation

rule may be applied. In this theory, the total damage D, is written as the sum of the damage

due to all damage events,

D = EADi" (X.2.2)
i

Failure is predicted to occur when D = 1. The fatigue lifetime is then the amount of time

it takes for this to happen.
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The damage increment due to one cycle, AD, is given by,

AD- IS lblc, (X.2.3)

where Si is the stress amplitude of the ith damaging event determined by the cycle counting

scheme. In our study, because the band width of the response of the multi-modes nonlinear

plate is very wide, we use Rain-flow Cycle Counting scheme.

Equation (X.2.2) may be implemented in a simulation of the damage accumulation in

the form

D _ D + [S[---_ (X.l.4)
C

where D is initially set to zero. Once the simulated damage is accumulated according to

equation (X.2.4) for a sufficiently long time, r, the average damage rate is

A = D/r, (X.2.5)

and the simulated mean fatigue life is

T = 1/A. (X.2.6)

Before counting the damage, a sufficiently long applied force time history should be

simulated, then the time history of the modal responses B1 are calculated using equation

(X.1.42) by the central difference method. Finally, the time history of the stress is calcu-

lated by equation (X.1.52). It should be noted that once the equivalent linear system is

determined, the computational effort of simulating the time series of the response is iden-

tical to that required for a linear system, and is independent of the type of non-linearity.

So the computational time is significantly reduced compared to the direct simulation of

the nonlinear system.

X.3. Numerical Results

The approach developed in the previous section has been applied to estimate the

fatigue life of a nonlinear plate, and the results compared to those obtained using a con-

ventional numerical simulation. The comparisons were performed to identify the errors in

the approximate method and to quantify the savings in computation time. The same time

step, At, was used in all computations. The parameters of the plate used in the numerical

study are:

E -- 107#/in 2, # - 0.1#/in a, h = 0.032in,

a = lOin, b = 15in, # = 0.3,

where the geometry of the plate is shown in Figure X.1. The number of resonant modes

for transverse motion, N, was taken to be 9 and the number of resonant modes for in-plane

motion, M, was taken to be 256.
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The estimated fatigue lives for eachpoint of the plate under different excitation levels
are shown in Figures X.2 to X.4, which are calculated assuming that cr,z is the only

significant stress component. The location of the minimum fatigue life is found to be

at the middle of the longest edge, where the maximum stress occurs. Because of the

computational time limitation, it is almost impossible to get a similar figure by using full

simulation. The comparison of the approximate results and those obtained using the full

system in equations (X.1.29) is performed at the point where the minimum fatigue life

happens.

Estimated fatigue lives at the middle point of the width under different excitation

levels are shown in Figure X.5. Results obtained using the full simulation and the equivalent

linearization methods are found to be in excellent agreement for a range of excitation levels.

To indicate the influence of the non-linearity, results are compared in figure X.5 between

a nonlinear plate and a plate which is assumed to respond linearly. The figure shows for

input excitation levels l_0(t) above -30dB g2/Hz, the plate response is highly non-linear

and the mean square responses and fatigue lives deviate substantially from that of a linear

system. This is because the geometry nonlinearities reduce the mean square values of the

displacement and the stress and increase the predicted fatigue lives. So it is unreasonable

to calculate the low excitation fatigue lives from high excitation data only by using a

simple linear extrapolation. Another observation we found here is although we considered

both bending stress and membrane stress in our stress model, the results from Figure X.5

show that the bending stress is totally dominant at the middle point of the edges. We can

understand it from equation (X.1.52) and recall that the boundary conditions we assumed

are clamped-clamped.

As mentioned above, along with the comparisons of the accuracy, the computation

time was compared. In the present effort, the quasi-simulations required roughly one-

hundredth of the computer time used to perform the full simulation. It is expected for

more complex systems with more modes, the present method would prove to be even more

advantageous.

As expected, while the power spectral density of the stress has very good agreement

between full simulation and equivalent linearization method at low excitation levels, they

are totally different when excitation level is high. This is because we approximate a

nonlinear system by a linear system and assume the response is Gaussian when excitation

is Gaussian white noise. Comparisons of the power spectrum of the stress are shown in

Figure X.6 to Figure X.8. Although peak shifts are found and agree very closely from both

methods, the peak broadness, which is a major feature of a high nonlinear system, is very

obvious in the full simulation solution when excitation level is high but can not be found

in the equivalent linearization solution. Also, some extra peaks are found in the equivalent

linearization solution at high excitation levels at the points where resonant frequencies

are doubled. This is caused by the nonlinear stress terms in equation (X.1.52). This

phenomenon is not obvious in the full simulation solution because of the peak broadness.
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XI.1 Effect of Nonlinearity on Spectral Shape

In previous sections we have examined the effect of spectral shape on the predicted fa-

tigue lives of linear structures using several damage counting methods and have developed
simulation methods to estimate the fatigue lives of nonlinear structures. It has also been

pointed out that nonlinearities in a structure can have a pronounced influence on the re-

sponse power spectrum in structures that are driven with random excitation. Although

there is no simple way to estimate the fatigue life from the power spectrum of a nonlinear

structure, it is important to understand the how the spectrum can be affected by nonlinear

effects. In the present section, we present an approximate method of calculating the power
spectrum of nonlinear systems.

In experimental studies of the response of structures to random excitations it is very

common to characterize the response by measuring the power spectral density. Vibration

engineers are usually very familiar with this representation of the structural behavior and,

in a glance, can gain considerable insight into the system being studied. One can eas-

ily see how many resonant modes contribute to the response by looking at the resonant

peaks in the spectrum and one can also determine whether the system is heavily or lightly

damped. There are situations, however, where nonlinear effects in the structure influence

the measured power spectrum in a manner that precludes straight-forward interpretation.

In cases where the response has sui_cient amplitude to elicit nonlinear behavior, the res-

onant response peaks in the power spectrum can take a dramatically different form than

that observed in linear systems. The main goal of the present investigation is to pro-

pose a new approximate scheme for describing the influence of structural nonlinearities

on the response power spectrum. It is hoped that the present study will provide a better

understanding of the random response of nonlinear systems.

The present approximate representation of the spectrum is applied to a bilinear oscil-

lator in which the nonlinearity has a very pronounced influence on the response spectrum.

Comparisons are presented of the estimated power spectral density obtained using the

present approximate scheme and by direct numerical simulation of the governing equation.

Excellent agreement is observed between the two methods.

The effect of nonlinearities on the response power spectral density has been studied

by a number of investigators. Early approximate analytical methods have been presented

that are based on either a perturbation approach [1] or equivalent linearization [2,3]. These

methods are found to give reasonable results only for very small nonlinearities. Other

studies based on numerical simulations have shown that in the case of a Dufl:ing oscillator,

where the stiffness contains a cubic nonlinearity and the damping is assumed to be linear,

the resonant response peak in the power spectral density tends to broaden and increase in

frequency as the level of the random excitation is increased [4-6]. This behavior has been

observed experimentally in studies of the high level random response of beams and plates
[7,s].

An approximate analytical procedure was proposed by the author to estimate the

response power spectrum of a Duffing oscillator with linear viscous damping [9]. The

method is based on an adaptation of the method of equivalent linearization where the

resonant frequency of the equivalent linear system is assumed to be random. This pro-

145



vided very accurate estimates of the spectrum when compared to results obtained using

numerical simulations. It has not been possible, however, to extend the method to more

general nonlinear random systems. The main purpose of the present study is to propose

an approximate scheme that may be applicable to a wider class of nonlinear systems than

studied previously.

The basic assumption of the method proposed in reference [9] is that the response

spectrum is strongly influenced by nonline_ities in the system because in a nonlinear sys-

tem, the stiffness, and hence, the natural frequency, depend on the response amplitude.

In a system with sufficiently light damping, the random response will behave as a narrow-

band process with an oscillation period that will vary randomly. The random variation

of the oscillation period is a direct result of the fact that the response amplitude varies

randomly. The random fluctuation of the dominant oscillation frequency will lead to a

broadened resonant response peak in the power spectrum. It is reasonable to assume,

therefore, that if certain statistics are known concerning the random amplitude fluctu-

ations, and if the relationship between the system resonant frequency and amplitude is

known, then one should be able to approximate the response spectrum.

The procedure presented in the following is based on assuming that the nonlinear

system may be approximated as a linear system having a natural frequency that varies with

the response amplitude in the same manner as that predicted when the nonconservative

forces are not present. It is assumed that in the damped system with random excitation,

the natural frequency depends on the envelope of the response of the original nonlinear

system. The present method thus depends on knowledge of the statistics of the response

envelope of the original nonlinear system being studied. The probability density of the

response envelope is known for several classes of nonlinear systems [10]. The random

fluctuations in the natural frequency are then assumed to occur much more slowly than

the fluctuations in the response. This leads to a simple formula for the response spectrum

in the form of an integration over the probability density of the envelope of the response

of the original nonlinear oscillator.

The present approach has been applied to a bilinear oscillator where the restoring

force is assumed to be equal to the deflection ( stiffness = 1 i for small deflections and is

equal to twice the deflection (stiffness = 2) when the amplitude of the deflection is greater

than unity. The damping is assumed to be linear viscous damping. This system is highly

nonlinear when the random response spends a significant amount of time crossing over be-

tween the two stiffness regimes. Numerical simulations of the random response have shown

that this bilinear stiffness characteristic has a pronounced effect on the predicted power

spectrum. It is hoped that if accurate spectral estimates can be obtained for this rather

difficult system, then the approximate method may be applicable to a fairly broad class of

oscillators. Comparisons of spectra obtained using the present approximate scheme with

those obtained using numerical simulations are presented and show excellent agreement.

As discussed above, the main purpose of the present study is to propose a description

of the influence of nonlinearities on the power spectra of random structures with random

excitation. Although the basic assumptions of the approach are plausible, a detailed error

analysis has yet to be conducted. The validity of the approach is investigated here through
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a single example, the bilinear oscillator. A more detailed investigation of the influence of
a number of approximations in the procedure will be performed in a future study.

XI.2. Approximate Representation of the Nonlinear System

Consider a nonlinear oscillator governed by

+wo2(Z + eg(z)) + ck = f(t)

where f(t) is Gaussian white noise, g(x) is a nonlinear restoring force, w0 is the natural

frequency in the absence of nonlinear effects, e is a constant and c is a viscous damping

coefficient. For the present investigation we consider only systems having conservative

nonlinearities. The function g(x) does not depend on velocity, k. Nonlinear damping

effects will be left for future studies. It is also assumed that g(x) is an odd function of z,

i.e. g(x)=-g(-z).

To develop a representation of the nonlinear random response, consider the behavior of

a conservative nonlinear system. It is well known that in the case of conservative nonlinear

systems, where c and f(t) are zero, the solution of equation (XI.1), x(t), will consist of

an oscillation having a period that depends on the amplitude of the motion. The exact

solution for the period, T, corresponding to an oscillation amplitude, a, is given by

f0°f °T(a) = 4 [2 _o2(u + eg(u))duJ-1/2dz (xi.2)

In the case of the damped system with random excitation described by equation (XI.1),

if the damping coefficient, c, is sufficiently small the response may be considered to be a

narrowband random process. The period of the oscillation cycles can be taken to be the

time duration between occurrences of zero crossings with positive slope. The time required

for one such cycle will depend on some measure of the oscillation amplitude. This follows

from the fact that the stiffness of the nonlinear system, and hence, the effective natural

frequency, depend on the response amplitude.

One can also view the response in the phase plane. In the case of the conservative

system where c and f(t) are zero, the amplitude of a given orbit in the phase plane deter-

mines the oscillation frequency. If the damping and excitation are sufficiently small, during

one cycle the orbit of the nonconservative system will consist of a small fluctuation about

that of the conservative system. If the amplitudes of the conservative and nonconservative

orbits are nearly the same, the time duration of the cycles will also be similar.

During the forced, damped response of the system described by equation (XI.1), the

amplitude of the motion will vary randomly and, based on the above discussion, we can

also expect the oscillation period to vary accordingly. An approximate representation of

the response of the system described by equation (XI.1) may then be obtained by idealizing

it as a linear system having a natural frequency that depends on the response amplitude.
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This amplitude dependentnatural frequencyis taken to be identical to that obtained for

the conservative system,

= (XI.3)

where T(a) is given in equation (XI.2). The oscillation frequency is thus regarded as an

intrinsic property of the system; it does not depend explicitly on the excitation or the

damping as long as the damping is sufficiently light. During the forced, damped response,

the oscillation frequency depends only on the amplitude of the motion as in the case of

the conservative system. The amplitude, a, is a random quantity which for the present

study is taken to be equal to the envelope of the random response of the original system

in equation (XI.1). If f(t) is Gaussian white noise, then the probability density of the

envelope of the solution to equation (XI.1) may be determined [10]. Equation (XI.1) may

then be approximated by

+ J(a)x + c_ =/(0" (XI.4)

XI.3 Estimates of the Response Power Spectral Density

Having a representation of the nonlinear system of equation (XI.1) in the form of a

linear system with a randomly varying natural frequency as in equation (XI.4) allows the

estimation of the response power spectral density. This may be obtained by taking the

Fourier transform of the autocorrelation function of the stationary response, E[x(t)z(t+r)],

where E[-] denotes the expected value. The solution of equation (XI.4) may be written in

the form of a convolution integral,

jr0 _
x(t) = h(t- r)f(r)dr, (XI.5)

where h(t) is the impulse response which is assumed to depend on the randomly varying

natural frequency, w(a), given in equation (XI.3). The estimation of the power spectral

density proceeds in the usual manner (see for example reference [10]) with the exception

that we must account for the random nature of the envelope, a. It is assumed that although

a varies randomly, it varies much more slowly than x(t). An approximate expression for

h(t) in equation (XI.5) may be obtained by solving

(XI.6)

with initial conditions, h(0) = h(0) = 0, and where 6(.) is the Dirac delta function. This

is equivalent to

"h+ w2(a)h + ch = O, (XI.7)

with initial conditions, h(O) = O, tt(O) = 1. If we assume that w2(a) varies much more

slowly than h(t), the solution of equation (XI.7) may be approximated by

h(t) = e-Ct/2sin(tx/w2(a)- (c/2)2), t > O. (xI.s)
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Given h(t), one can calculate the autocorrelation function as

f0t /,t+rRxx(r) = E[x(t)x(t+r)] = El( h(r')f(t-r')dr')(/o h(r")f(t+r-r")dr")]. (XI.9)

Since the impulse response in equation (XI.8) is zero for negative values of t, the lower limits

of integration may be set to -oo. Because we are interested in the stationary response,

the value of t is set to c_. The upper limits of integration are then set to _. By assuming

that the impulse response and the white noise excitation are uncorrelated, equation (XI.9)

may be written as

£ZRxx(r) = Z[h(r')h(r")lE[/(t- r')/(t + r- r")ldr'dr". (X_.10)

It is assumed that f(t) is stationary Gaussian white noise so that

E[f(t - r')f(/+ r - r")] = 2reI$(r + r'- r"), (XI.11)

where 6(.) is the Dirac delta function and if/is the power spectral density of the excitation.

The integration over r" in equation (XI.10) then gives

R_(r) = 2_rO I E[h(r')h(r + r')]dr'. (XI.12)

The power spectral density of z(t) is equal to the Fourier transform of Rz_(r),

£1 Rxx(r)e_i_rd r
¢_(_) = _

(xI._3)

///?= ¢! E[h(r')h(r + r')]e-i_dr'dr,

where i is x/L-] ". If the integrand is multiplied by ei_'e-i_', equation (XI.13) becomes

/?/? , • t

• _(w) = V I E[h(r')e i_'r'h(r + r )e -'_(r+r )]dr'dr (XI.14)

carrying out the integration first over r and then r' gives

+=(w) = +IE[H(w)H*(w)],

where (.)* denotes the complex conjugate and,

//H(_) - h(r)_-_"dr.
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Substituting equation (XI.S) into equations (XI.15) and (XI.16) gives the response

spectrum in the form

¢I

(I,_(w) = E[(w2(a ) _w2) 2 + (cw)2 ] , (XI.17)

where in the evaluation of equation (XI.16) we have again assumed that w2(a) is slowly

varying in comparison to x(t).

The calculation of the expected value in equation (XI. 17) is possible if the probability

density of the envelope response, a, is known. The exact expression for the probability

density of the envelope of the solution to equation (XI.1) is [10]

p(a) = + -v(°)/''o, (xI.lS)

where cn is a normalization constant so that

P(a)da = 1, (XI.19)
Oo

and ]?(a) is the potential energy of the system corresponding to the response amplitude a,

i"Y(a) = w02(a2/2 +e g(x)dz). (XI.20)

a02 is the mean square response of equation (XI.1) when e = 0,

@I---_-_ (XI.21)=

The approximate response spectrum is then given by

fo 0 P(a)da. (XI.22)
¢I

= _  2)2

XI.4 Numerical Results for a Bilinear Oscillator

Equation (XI.22) has been applied to estimate the response spectrum of a bilinear

system having a nonlinear restoring force as shown in figure XI.1. The restoring force

shown in figure XI.1 is equal to wg(x + eg(x)) in equation (XI.1). In the present calculations

the system is assumed to have a linear force/deflection characteristic with unit slope when

the amplitude of the response is less than unity. For greater response amplitudes, the

stiffness of the system is assumed to be doubled as shown in the figure. The viscous

damping coefficient, c, in equation (XI.1) is taken to be .005 .

The results of applying equation (XI.22) for a range of input force spectrum levels,

@I are shown in figures XI.2 A) through D). The figures also show the estimated spectra
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obtained by direct numerical simulation of the responseof equation (XI.1). This was
computed by calculating the time domain responseand estimating the spectrum by a
Fast Fourier Transform. The figures show that the power spectrum exhibits a broadened

shape when the nonlinearity is significant. The effect of the nonlinear restoring force on

the spectrum shape is depicted extremely well by the approximate method of equation

(xi.22).
The primary discrepancy appears in figures XI.2 C) and XI.2 D) where the approxi-

mate expression in equation (XI.22) predicts a significant peak a 1 rad/sec. Since neither

solution is exact it is desirable to employ a third solution method to examine this effect.
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XII Conclusions

Several analytical methods have been developed to facilitate the prediction of the fatigue

lives of structures that are subjected to acoustic loadings. In sections II through XI, time

domain methods were presented for performing fatigue predictions based on knowledge of

the power spectral density of the random strain response. It is suggested that procedures

such as those presented here will lead to much more reliable fatigue predictions than

methods that are commonly used.

Because any fatigue prediction procedure relies on empirical data to characterize ma-

terial fatigue properties, in section VII we present a technique for estimating the necessary

constants using either narrowband random loads or realistic broadband loads as encoun-

tered in service. One advantage of this procedure is that it enables one to identify fatigue

constants from tests of complex structures with multiple resonant modes rather than sim-

plified coupons.

Another contribution of the present study has been to construct a method of account-

ing for nonlinear response in random fatigue predictions. This can be helpful in situations

where the in service loads are sufficiently intense to eficit nonfinear response or where non-

linear effects are found to be significant in accelerated tests which employ artificially high

excitation levels. The approximate procedure is applied to nonlinear beams and plates
and excellent agreement is observed between results using the approximate method and

using a detailed numerical simulation. Conventional numerical simulation methods are not

practical for random fatigue predictions for nonlinear structures because the nonlinearities

drastically complicate the calculations. It is found that the approximate method makes it

practical to analyze the fatigue lives of highly complex nonlinear structures. This is be-

cause the numerical effort required using the approximate procedure is roughly the same
as for a linear structure.

The final contribution of this effort has been to identify the effect of nonlinearities

on the power spectral density of the random response. The power spectral density is

commonly used in the analysis of random vibration. When nonlinear effects contribute to

the response, the power spectrum is influenced in a manner that is far from obvious. An

explanation of this effect is proposed and an approximate analytical method is presented to

predict the power spectrum of nonlinear random systems. Excellent agreement is observed
between the approximate method and numerical simulations.
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